dc.creatorArnau, A.
dc.creatorJimenez, Y.
dc.creatorFernández, R.
dc.creatorTorres, R.
dc.creatorOtero, Marcelo Javier
dc.creatorCalvo, Ernesto Julio
dc.date.accessioned2019-04-11T17:36:16Z
dc.date.accessioned2022-10-15T13:58:29Z
dc.date.available2019-04-11T17:36:16Z
dc.date.available2022-10-15T13:58:29Z
dc.date.created2019-04-11T17:36:16Z
dc.date.issued2006-05
dc.identifierArnau, A.; Jimenez, Y.; Fernández, R.; Torres, R.; Otero, Marcelo Javier; et al.; Viscoelastic characterization of electrochemically prepared conducting polymer films by impedance analysis at quartz crystal study of the surface roughness effect on the effective values of the viscoelastic properties of the coating; Electrochemical Society; Journal of the Electrochemical Society; 153; 7; 5-2006; 455-466
dc.identifier0013-4651
dc.identifierhttp://hdl.handle.net/11336/74086
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4394154
dc.description.abstractAn electrochemical quartz crystal microbalance is used for a continuous monitoring of the growth of the polymer poly(3,4-ethylenedioxy) thiophene tetrabutylammonium perchlorate (PEDOT-TBAP), electropolymerized in acetonitrile on a gold electrode of a 10 MHz AT-cut quartz crystal resonator. The surface acoustic impedance of the resonator is analyzed starting from the electrical admittance continuously measured by means of a network analyzer. Changes in the acoustic impedance suggest that a mechanical resonance phenomenon occurs during the electrodeposition. To determine the origin of this effect, the evolution of the physical properties of the coating is analyzed. This analysis shows a significant change of the viscoelastic properties of the coating during the electropolymerization and especially during the time interval of the suspected mechanical resonance. The effect of the surface roughness on the mechanical impedance of the coating is analyzed. This study seems to indicate that the changes in the effective viscoelastic properties of the coating are due to the changes in the surface roughness. The mechanical resonance effect also seems to be more a result of this change in the coating effective viscoelastic properties than of the growth of the coating thickness where coating viscoelastic properties are maintained constant. © 2006 The Electrochemical Society. All rights reserved.
dc.languageeng
dc.publisherElectrochemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1149/1.2195893
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectVISCOELASTICITY
dc.subjectPEDOT
dc.subjectQUARTZ CRYSTAL RESONATORS
dc.subjectELECTROPOLIMERIZATION
dc.titleViscoelastic characterization of electrochemically prepared conducting polymer films by impedance analysis at quartz crystal study of the surface roughness effect on the effective values of the viscoelastic properties of the coating
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución