dc.creatorAleandro, María José
dc.creatorPeña, Carlos César
dc.date.accessioned2018-12-27T19:50:15Z
dc.date.accessioned2022-10-15T13:56:48Z
dc.date.available2018-12-27T19:50:15Z
dc.date.available2022-10-15T13:56:48Z
dc.date.created2018-12-27T19:50:15Z
dc.date.issued2012-03
dc.identifierAleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665
dc.identifier1076-9803
dc.identifierhttp://hdl.handle.net/11336/67110
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4393976
dc.description.abstractLet U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}.
dc.languageeng
dc.publisherState University of New York at Albany
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectArens products
dc.subjectamenable and weakly amenable Banach algebras
dc.subjectdual Banach algebras
dc.subjectBeurling algebras
dc.titleOn dual valued operators on Banach álgebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución