dc.creator | Aleandro, María José | |
dc.creator | Peña, Carlos César | |
dc.date.accessioned | 2018-12-27T19:50:15Z | |
dc.date.accessioned | 2022-10-15T13:56:48Z | |
dc.date.available | 2018-12-27T19:50:15Z | |
dc.date.available | 2022-10-15T13:56:48Z | |
dc.date.created | 2018-12-27T19:50:15Z | |
dc.date.issued | 2012-03 | |
dc.identifier | Aleandro, María José; Peña, Carlos César; On dual valued operators on Banach álgebras; State University of New York at Albany; New York Journal of Mathematics; 18; 3-2012; 657-665 | |
dc.identifier | 1076-9803 | |
dc.identifier | http://hdl.handle.net/11336/67110 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4393976 | |
dc.description.abstract | Let U be a regular Banach algebra and let D:U→U∗ be a bounded linear operator, where U∗ is the topological dual space of U. We seek conditions under which the transpose of D becomes a bounded derivation on U∗∗. We focus our attention on the class D(U) of bounded derivations D:U→U∗ so that <a,D(a)>=0 for all a∈U. We consider this matter in the setting of Beurling algebras on the additive group of integers. We show that U is a weakly amenable Banach algebra if and only if D(U)≠{0}. | |
dc.language | eng | |
dc.publisher | State University of New York at Albany | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/http://nyjm.albany.edu/j/2012/18-35.html | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Arens products | |
dc.subject | amenable and weakly amenable Banach algebras | |
dc.subject | dual Banach algebras | |
dc.subject | Beurling algebras | |
dc.title | On dual valued operators on Banach álgebras | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |