dc.creatorBernardis, Ana Lucia
dc.creatorMartín Reyes, Francisco Javier
dc.date.accessioned2020-03-12T18:19:35Z
dc.date.accessioned2022-10-15T13:42:49Z
dc.date.available2020-03-12T18:19:35Z
dc.date.available2022-10-15T13:42:49Z
dc.date.created2020-03-12T18:19:35Z
dc.date.issued2000-12
dc.identifierBernardis, Ana Lucia; Martín Reyes, Francisco Javier; Singular integrals in the Cesàro sense; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 6; 2; 12-2000; 143-152
dc.identifier1069-5869
dc.identifierhttp://hdl.handle.net/11336/99300
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4392680
dc.description.abstractThe existence of the singular integral$int K(x,y) f(y) dy$associated to a Calder´on-Zygmund kernel where the integral is understood inthe principal value sense$Tf(x)=lim_{epsilon o {0^+}}int_{|x-y|>epsilon} K(x,y) f(y) dy$has been well studied.We study inthis paper the existence of the above integral in the Ces`aro-$alpha$ sense.More precisely, we study the existence of$$lim_{epsilon o {0^+}} int_{|x-y|>epsilon} f(y) K(x,y) left(1 -{{epsilon} over{|x-y|}} ight)^{alpha} dy quad ext{ a.e.}$$for $-1
dc.languageeng
dc.publisherBirkhauser Boston Inc
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSingular integrals
dc.subjectCesàro sense
dc.titleSingular integrals in the Cesàro sense
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución