dc.creator | Bernardis, Ana Lucia | |
dc.creator | Martín Reyes, Francisco Javier | |
dc.date.accessioned | 2020-03-12T18:19:35Z | |
dc.date.accessioned | 2022-10-15T13:42:49Z | |
dc.date.available | 2020-03-12T18:19:35Z | |
dc.date.available | 2022-10-15T13:42:49Z | |
dc.date.created | 2020-03-12T18:19:35Z | |
dc.date.issued | 2000-12 | |
dc.identifier | Bernardis, Ana Lucia; Martín Reyes, Francisco Javier; Singular integrals in the Cesàro sense; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 6; 2; 12-2000; 143-152 | |
dc.identifier | 1069-5869 | |
dc.identifier | http://hdl.handle.net/11336/99300 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4392680 | |
dc.description.abstract | The existence of the singular integral$int K(x,y) f(y) dy$associated to a Calder´on-Zygmund kernel where the integral is understood inthe principal value sense$Tf(x)=lim_{epsilon o {0^+}}int_{|x-y|>epsilon} K(x,y) f(y) dy$has been well studied.We study inthis paper the existence of the above integral in the Ces`aro-$alpha$ sense.More precisely, we study the existence of$$lim_{epsilon o {0^+}} int_{|x-y|>epsilon} f(y) K(x,y) left(1 -{{epsilon} over{|x-y|}} ight)^{alpha} dy quad ext{ a.e.}$$for $-1 | |
dc.language | eng | |
dc.publisher | Birkhauser Boston Inc | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | Singular integrals | |
dc.subject | Cesàro sense | |
dc.title | Singular integrals in the Cesàro sense | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |