dc.creatorAmster, Pablo Gustavo
dc.creatorZamora, Manuel
dc.date.accessioned2019-11-15T15:16:42Z
dc.date.accessioned2022-10-15T13:16:57Z
dc.date.available2019-11-15T15:16:42Z
dc.date.available2022-10-15T13:16:57Z
dc.date.created2019-11-15T15:16:42Z
dc.date.issued2018-10
dc.identifierAmster, Pablo Gustavo; Zamora, Manuel; Periodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 38; 10; 10-2018; 4819-4835
dc.identifier1078-0947
dc.identifierhttp://hdl.handle.net/11336/89055
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4390437
dc.description.abstractTWe prove the existence of T−periodic solutions for the second order non-linear equation u0 1 − u02 0 = h(t)g(u), where the non-linear term g has two singularities and the weight function h changes sign. We find a relation between the degeneracy of the zeroes of the weight function and the order of one of the singularities of the non-linear term. The proof is based on the classical Leray-Schauder continuation theorem. Some applications to important mathematical models are presented.
dc.languageeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2018211
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2018211
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAND PHRASES
dc.subjectDEGREE THEORY
dc.subjectINDEFINITE SINGULARITY
dc.subjectLERAY-SCHAUDER CONTINUATION THEOREM
dc.subjectPERIODIC SOLUTIONS
dc.subjectSINGULAR DIFFERENTIAL EQUATIONS
dc.titlePeriodic solutions for indefinite singular equations with singularities in the spatial variable and non-monotone nonlinearity
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución