dc.creatorAldroubi, Akram
dc.creatorAnastasio, Magalí
dc.creatorCabrelli, Carlos
dc.creatorMolter, Ursula Maria
dc.date.accessioned2020-11-03T13:59:19Z
dc.date.accessioned2022-10-15T13:16:37Z
dc.date.available2020-11-03T13:59:19Z
dc.date.available2022-10-15T13:16:37Z
dc.date.created2020-11-03T13:59:19Z
dc.date.issued2011-11
dc.identifierAldroubi, Akram; Anastasio, Magalí; Cabrelli, Carlos; Molter, Ursula Maria; A dimension reduction scheme for the computation of optimal unions of subspaces; Sampling Publishing; Sampling Theory in Signal and Image Processing; 10; 1-2; 11-2011; 135-150
dc.identifier1530-6429
dc.identifierhttp://hdl.handle.net/11336/117502
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4390404
dc.description.abstractGiven a set of points F in a high dimensional space, the problem of finding a union of subspaces U_i V_i ⊆ R^N that best explains the data F increases dramatically with the dimension of R^N. In this article, we study a class of transformations that map the problem into another one in lower dimension. We use the best model in the low dimensional space to approximate the best solution in the original high dimensional space. We then estimate the error produced between this solution and the optimal solution in the high dimensional space.
dc.languageeng
dc.publisherSampling Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://stsip.org
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSPARSITY
dc.subjectPROJECTIVE CLUSTERING
dc.subjectDIMENSIONALITY REDUCTION
dc.subjectRANDOM MATRICES
dc.subjectCONCENTRATION INEQUALITIES
dc.titleA dimension reduction scheme for the computation of optimal unions of subspaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución