dc.creatorKoelink, Erik
dc.creatorvan Pruijssen, Maarten
dc.creatorRomán, Pablo Manuel
dc.date.accessioned2021-03-01T15:25:05Z
dc.date.accessioned2022-10-15T13:16:27Z
dc.date.available2021-03-01T15:25:05Z
dc.date.available2022-10-15T13:16:27Z
dc.date.created2021-03-01T15:25:05Z
dc.date.issued2020-04-15
dc.identifierKoelink, Erik; van Pruijssen, Maarten; Román, Pablo Manuel; Matrix elements of irreducible representations of SU(n + 1)×SU(n + 1) and multivariable matrix-valued orthogonal polynomials; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 278; 7; 15-4-2020
dc.identifier0022-1236
dc.identifierhttp://hdl.handle.net/11336/126981
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4390390
dc.description.abstractIn Part 1 we study the spherical functions on compact symmetric pairs of arbitrary rank under a suitable multiplicity freeness assumption and additional conditions on the branching rules. The spherical functions are taking values in the spaces of linear operators of a finite dimensional representation of the subgroup, so the spherical functions are matrix-valued. Under these assumptions these functions can be described in terms of matrix-valued orthogonal polynomials in several variables, where the number of variables is the rank of the compact symmetric pair. Moreover, these polynomials are uniquely determined as simultaneous eigenfunctions of a commutative algebra of differential operators. In Part 2 we verify that the group case SU(n+1) meets all the conditions that we impose in Part 1. For any k∈N0 we obtain families of orthogonal polynomials in n variables with values in the N×N-matrices, where N=(n+kk). The case k=0 leads to the classical Heckman-Opdam polynomials of type An with geometric parameter. For k=1 we obtain the most complete results. In this case we give an explicit expression of the matrix weight, which we show to be irreducible whenever n≥2. We also give explicit expressions of the spherical functions that determine the matrix weight for k=1. These expressions are used to calculate the spherical functions that determine the matrix weight for general k up to invertible upper-triangular matrices. This generalizes and gives a new proof of a formula originally obtained by Koornwinder for the case n=1. The commuting family of differential operators that have the matrix-valued polynomials as simultaneous eigenfunctions contains an element of order one. We give explicit formulas for differential operators of order one and two for (n,k) equal to (2,1) and (3,1).
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jfa.2019.108411
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022123619304057?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBRANCHING RULES
dc.subjectMULTI-VARIABLE MATRIX-VALUED ORTHOGONAL POLYNOMIALS
dc.subjectSPHERICAL FUNCTIONS
dc.titleMatrix elements of irreducible representations of SU(n + 1)×SU(n + 1) and multivariable matrix-valued orthogonal polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución