dc.creatorMassey, Pedro Gustavo
dc.creatorStojanoff, Demetrio
dc.date.accessioned2020-06-30T20:07:17Z
dc.date.accessioned2022-10-15T13:13:53Z
dc.date.available2020-06-30T20:07:17Z
dc.date.available2022-10-15T13:13:53Z
dc.date.created2020-06-30T20:07:17Z
dc.date.issued2004-12
dc.identifierMassey, Pedro Gustavo; Stojanoff, Demetrio; Generalized Schur complements and P-complementable operators; Elsevier Science Inc; Linear Algebra and its Applications; 393; 12-2004; 299-318
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/108538
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4390151
dc.description.abstractLet A be a selfadjoint operator and P be an orthogonal projection both operating on a Hilbert space H. We say that A is P-complementable if A−µP≥ 0 holds for some µ ∈ R. In this case we define IP (A) = max{µ ∈ R : A − µP ≥0}. As a tool for computing IP(A) we introduce a natural generalization of the Schur complement or shorted operator of A to f A to S = R(P ), denoted by Σ(A, P ). We give expressions and a characterization for IP(A) that generalize some known results for particular choices of P. We also study some aspects of the shorted operator  Σ(A,P) for P-complementable A, under the hypothesis of compatibility of the pair. We give some applications in the finite dimensional context.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379503006955
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.laa.2003.07.010
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPOSITIVE SEMIDEFINITE OPERATORS
dc.subjectSHORTED OPERATOR
dc.subjectHADAMARD PRODUCT
dc.subjectCOMPLETELY POSITIVE MAPS
dc.titleGeneralized Schur complements and P-complementable operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución