dc.creatorBeltran, Carlos
dc.creatorDedieu, Jean Pierre
dc.creatorMalajovich, Gregorio
dc.creatorShub, Michael Ira
dc.date.accessioned2019-01-23T21:59:29Z
dc.date.accessioned2022-10-15T12:55:50Z
dc.date.available2019-01-23T21:59:29Z
dc.date.available2022-10-15T12:55:50Z
dc.date.created2019-01-23T21:59:29Z
dc.date.issued2010-03
dc.identifierBeltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506
dc.identifier0895-4798
dc.identifierhttp://hdl.handle.net/11336/68499
dc.identifier1095-7162
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4388544
dc.description.abstractWe define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.
dc.languageeng
dc.publisherSociety for Industrial and Applied Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1137/080718681
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCONDITION NUMBER
dc.subjectGEODESIC
dc.subjectLINEAR GROUP
dc.subjectLOG-CONVEXITY
dc.subjectRIEMANNIAN GEOMETRY
dc.titleConvexity properties of the condition number
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución