dc.creatorMiglioli, Martín Carlos
dc.date.accessioned2020-07-29T15:00:54Z
dc.date.accessioned2022-10-15T12:46:29Z
dc.date.available2020-07-29T15:00:54Z
dc.date.available2022-10-15T12:46:29Z
dc.date.created2020-07-29T15:00:54Z
dc.date.issued2020-05
dc.identifierMiglioli, Martín Carlos; On Schatten restricted norms; American Mathematical Society; Proceedings of the American Mathematical Society; 5-2020; 1-10
dc.identifier0002-9939
dc.identifierhttp://hdl.handle.net/11336/110542
dc.identifier1088-6826
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4387685
dc.description.abstractWe consider norms on a complex separable Hilbert space such that ⟨aξ,ξ⟩≤‖ξ‖2≤⟨bξ,ξ⟩ for positive invertible operators a and b that differ by an operator in the Schatten class. We prove that these norms have unitarizable isometry groups, our proof uses a generalization of a fixed point theorem for isometric actions on positive invertible operators. As a result, if their isometry groups do not leave any finite dimensional subspace invariant, then the norms must be Hilbertian. That is, if a Hilbertian norm is changed to a close non-Hilbertian norm, then the isometry group does leave a finite dimensional subspace invariant. The approach involves metric geometric arguments related to the canonical action on the non-positively curved space of positive invertible Schatten perturbations of the identity.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/proc/earlyview/#proc15179
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/proc/15179
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2002.08922
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectp-BUSEMANN SPACE
dc.subjectUNITARIZATION
dc.subjectMAZUR´S ROTATION PROBLEM
dc.subjectISOMETRY GROUPS
dc.titleOn Schatten restricted norms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución