dc.creatorBustinza, Rommel
dc.creatorLombardi, Ariel Luis
dc.creatorSolano, Manuel
dc.date.accessioned2022-04-04T13:13:24Z
dc.date.accessioned2022-10-15T12:35:57Z
dc.date.available2022-04-04T13:13:24Z
dc.date.available2022-10-15T12:35:57Z
dc.date.created2022-04-04T13:13:24Z
dc.date.issued2019-03-01
dc.identifierBustinza, Rommel; Lombardi, Ariel Luis; Solano, Manuel; An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 345; 1-3-2019; 382-401
dc.identifier0045-7825
dc.identifierhttp://hdl.handle.net/11336/154240
dc.identifier1879-2138
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4386701
dc.description.abstractThis paper deals with the a priori error analysis for a convection-dominated diffusion 2D problem, when applying the HDG method on a family of anisotropic triangulations. It is known that in this case, boundary or interior layers may appear. Therefore, it is important to resolve these layers in order to recover, if possible, the expected order of approximation. In this work, we extend the use of HDG method on anisotropic meshes. To this end, some assumptions need to be asked to the stabilization parameter, as well as to the family of triangulations. In this context, when the discrete local spaces are polynomials of degree k ≥ 0, this approach is able to recover an order of convergence k + 1 2 in L 2 for all the variables. Numerical examples confirm our theoretical results.
dc.languageeng
dc.publisherElsevier Science SA
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0045782518305656
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cma.2018.11.010
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectANISOTROPIC MESHES
dc.subjectCONVECTION-DOMINATED DIFFUSION PROBLEM
dc.subjectHYBRIDIZABLE DISCONTINUOUS GALERKIN
dc.titleAn anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución