dc.creatorGallo, Andrea Lilén
dc.creatorSaal, Linda Victoria
dc.date.accessioned2021-10-13T18:36:25Z
dc.date.accessioned2022-10-15T12:30:19Z
dc.date.available2021-10-13T18:36:25Z
dc.date.available2022-10-15T12:30:19Z
dc.date.created2021-10-13T18:36:25Z
dc.date.issued2020-09
dc.identifierGallo, Andrea Lilén; Saal, Linda Victoria; Some harmonic analysis on commutative nilmanifolds; Heldermann Verlag; Journal Of Lie Theory; 30; 3; 9-2020; 673-690
dc.identifier0949-5932
dc.identifierhttp://hdl.handle.net/11336/143438
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4386183
dc.description.abstractIn this work, we consider a family of Gelfand pairs (KnN, N) (inshort (K, N) ) where Nis a two step nilpotent Lie group, and Kis the group oforthogonal automorphisms ofN. This family has a nice analytic property: almos tall these 2-step nilpotent Lie group have square integrable representations. In these cases, following Moore-Wolf’s theory, we find an explicit expression for the inversion formula of N, and as a consequence, we decompose the regular action ofKnNonL2(N). This explicit expression for the Fourier inversion formula of N, specializedto a class of commutative nilmanifolds described by J. Lauret, sharpens the recent analysis due to J. Wolf concerning the regular action ofKnNonL2(N) . When Nis the Heisenberg group, we obtain the decomposition ofL2(N) under the action of KnN for all Ksuch that (K, N) is a Gelfand pair. Finally, we also give aparametrization for the generic spherical functions associated to the pair (K, N) ,and we give an explicit expression for these functions in some cases
dc.languageeng
dc.publisherHeldermann Verlag
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1909.09873
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.heldermann.de/JLT/JLT30/JLT303/jlt30035.htm
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGELFAND PAIRS
dc.subjectINVERSION FORMULA
dc.subjectNILPOTENT GROUP
dc.subjectREGULAR REPRESENTATION
dc.titleSome harmonic analysis on commutative nilmanifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución