dc.creatorAndruchow, Esteban
dc.creatorChiumiento, Eduardo Hernan
dc.creatorLarotonda, Gabriel Andrés
dc.date.accessioned2020-11-30T14:13:13Z
dc.date.accessioned2022-10-15T12:26:45Z
dc.date.available2020-11-30T14:13:13Z
dc.date.available2022-10-15T12:26:45Z
dc.date.created2020-11-30T14:13:13Z
dc.date.issued2019-11
dc.identifierAndruchow, Esteban; Chiumiento, Eduardo Hernan; Larotonda, Gabriel Andrés; Canonical sphere bundles of the Grassmann manifold; Springer; Geometriae Dedicata; 203; 1; 11-2019; 179-203
dc.identifier0046-5755
dc.identifierhttp://hdl.handle.net/11336/119339
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4385889
dc.description.abstractFor a given Hilbert space H, consider the space of self-adjoint projections P(H). In this paper we study the differentiable structure of a canonical sphere bundle over P(H) given by R={(P,f)∈P(H)×H:Pf=f,‖f‖=1}.We establish the smooth action on R of the group of unitary operators of H, and it thereby turns out that the connected components of R are homogeneous spaces. Then we study the metric structure of R by endowing it first with the uniform quotient metric, which is a Finsler metric, and we establish minimality results for the geodesics. These are given by certain one-parameter groups of unitary operators, pushed into R by the natural action of the unitary group. Then we study the restricted bundle R2+ given by considering only the projections in the restricted Grassmannian, locally modeled by Hilbert?Schmidt operators. Therefore we endow R2+ with a natural Riemannian metric that can be obtained by declaring that the action of the group is a Riemannian submersion. We study the Levi?Civita connection of this metric and establish a Hopf?Rinow theorem for R2+, again obtaining a characterization of the geodesics as the image of certain one-parameter groups with special speeds.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10711-019-00431-7
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10711-019-00431-7
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFINSLER METRIC
dc.subjectFLAG MANIFOLD
dc.subjectGEODESIC
dc.subjectPROJECTION
dc.subjectRIEMANNIAN METRIC
dc.subjectSPHERE BUNDLE
dc.titleCanonical sphere bundles of the Grassmann manifold
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución