dc.creatorCravero, Fiorella
dc.creatorDiaz, Monica Fatima
dc.creatorPonzoni, Ignacio
dc.date.accessioned2022-07-18T19:50:22Z
dc.date.accessioned2022-10-15T12:23:03Z
dc.date.available2022-07-18T19:50:22Z
dc.date.available2022-10-15T12:23:03Z
dc.date.created2022-07-18T19:50:22Z
dc.date.issued2022-05
dc.identifierCravero, Fiorella; Diaz, Monica Fatima; Ponzoni, Ignacio; Polymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break; American Institute of Physics; Journal of Chemical Physics; 156; 20; 5-2022; 1-31
dc.identifier0021-9606
dc.identifierhttp://hdl.handle.net/11336/162419
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4385548
dc.description.abstractThe artificial intelligence-based prediction of the mechanical properties derived from the tensile test, plays a key role in assessing the application profile of new polymeric materials, specifically in the design stage, prior to synthesis. This strategy saves time and resources when creating new polymers with improved properties that are increasingly demanded by the market. A quantitative structure-property relationship (QSPR) model for tensile strength at break is presented in this work. The QSPR methodology applied here is based on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From the whole study, a QSPR model composed of five molecular descriptors that achieved a correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of analysis: a more general one in which models are discarded for redundant information metrics and a deeper one in which a chemistry expert can make decisions on the composition of the model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In this way, with the present work, we close a contribution cycle to polymer informatics, providing QSPR models oriented to the prediction of mechanical properties related to the tensile test.
dc.languageeng
dc.publisherAmerican Institute of Physics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/5.0087392
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0087392
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMACHINE LEARNING
dc.subjectVISUAL ANALYTICS
dc.subjectPOLYMER INFORMATICS
dc.subjectQSPR
dc.subjectMECHANICAL PROPERTIES
dc.subjectSTRENGTH AT BREAK
dc.subjectTENSILE TEST
dc.titlePolymer informatics for QSPR prediction of tensile mechanical properties. Case study: Strength at break
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución