dc.creatorDubinsky, Manuel
dc.creatorMassri, Cesar Dario
dc.creatorTaubin, Gabriel
dc.date.accessioned2022-07-14T14:55:43Z
dc.date.accessioned2022-10-15T11:57:59Z
dc.date.available2022-07-14T14:55:43Z
dc.date.available2022-10-15T11:57:59Z
dc.date.created2022-07-14T14:55:43Z
dc.date.issued2021-05
dc.identifierDubinsky, Manuel; Massri, Cesar Dario; Taubin, Gabriel; Minimum Spanning Tree Cycle Intersection problem; Elsevier Science; Discrete Applied Mathematics; 294; 5-2021; 152-166
dc.identifier0166-218X
dc.identifierhttp://hdl.handle.net/11336/162141
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4383439
dc.description.abstractConsider a connected graph G and let T be a spanning tree of G. Every edge e∈G−T induces a cycle in T∪{e}. The intersection of two distinct such cycles is the set of edges of T that belong to both cycles. We consider the problem of finding a spanning tree that has the least number of such non-empty intersections. In this article we analyze the particular case of complete graphs, and formulate a conjecture for graphs that have a universal vertex.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2021.01.031
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X21000469
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCYCLE BASES
dc.subjectGRAPHS
dc.subjectSPANNING TREES
dc.titleMinimum Spanning Tree Cycle Intersection problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución