dc.creator | Dubinsky, Manuel | |
dc.creator | Massri, Cesar Dario | |
dc.creator | Taubin, Gabriel | |
dc.date.accessioned | 2022-07-14T14:55:43Z | |
dc.date.accessioned | 2022-10-15T11:57:59Z | |
dc.date.available | 2022-07-14T14:55:43Z | |
dc.date.available | 2022-10-15T11:57:59Z | |
dc.date.created | 2022-07-14T14:55:43Z | |
dc.date.issued | 2021-05 | |
dc.identifier | Dubinsky, Manuel; Massri, Cesar Dario; Taubin, Gabriel; Minimum Spanning Tree Cycle Intersection problem; Elsevier Science; Discrete Applied Mathematics; 294; 5-2021; 152-166 | |
dc.identifier | 0166-218X | |
dc.identifier | http://hdl.handle.net/11336/162141 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4383439 | |
dc.description.abstract | Consider a connected graph G and let T be a spanning tree of G. Every edge e∈G−T induces a cycle in T∪{e}. The intersection of two distinct such cycles is the set of edges of T that belong to both cycles. We consider the problem of finding a spanning tree that has the least number of such non-empty intersections. In this article we analyze the particular case of complete graphs, and formulate a conjecture for graphs that have a universal vertex. | |
dc.language | eng | |
dc.publisher | Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.dam.2021.01.031 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0166218X21000469 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | CYCLE BASES | |
dc.subject | GRAPHS | |
dc.subject | SPANNING TREES | |
dc.title | Minimum Spanning Tree Cycle Intersection problem | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |