dc.creatorHueso, Luis E.
dc.creatorAlonso Pruneda, José Miguel
dc.creatorFerrari, Valeria Paola
dc.creatorBurnell, Gavin
dc.creatorValdés Herrera, José P.
dc.creatorSimons, Benjamin D.
dc.creatorLittlewood, Peter B.
dc.creatorArtacho, Emilio
dc.creatorFert, Albert
dc.creatorMathur, Neil D.
dc.date.accessioned2020-01-30T18:22:46Z
dc.date.accessioned2022-10-15T11:57:02Z
dc.date.available2020-01-30T18:22:46Z
dc.date.available2022-10-15T11:57:02Z
dc.date.created2020-01-30T18:22:46Z
dc.date.issued2007-01
dc.identifierHueso, Luis E.; Alonso Pruneda, José Miguel; Ferrari, Valeria Paola; Burnell, Gavin; Valdés Herrera, José P.; et al.; Transformation of spin information into large electrical signals using carbon nanotubes; Nature Publishing Group; Nature; 445; 7126; 1-2007; 410-413
dc.identifier0028-0836
dc.identifierhttp://hdl.handle.net/11336/96240
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4383375
dc.description.abstractSpin electronics (spintronics) exploits the magnetic nature of electrons, and this principle is commercially applied in, for example, the spin valves of disk-drive read heads. There is currently widespread interest in developing new types of spintronic devices based on industrially relevant semiconductors, in which a spin-polarized current flows through a lateral channel between a spin-polarized source and drain. However, the transformation of spin information into large electrical signals is limited by spin relaxation, so that the magnetoresistive signals are below 1% (ref. 2). Here we report large magnetoresistance effects (61% at 5 K), which correspond to large output signals (65 mV), in devices where the non-magnetic channel is a multiwall carbon nanotube that spans a 1.5 μm gap between epitaxial electrodes of the highly spin polarized manganite La0.7Sr0.3MnO3. This spintronic system combines a number of favourable properties that enable this performance; the long spin lifetime in nanotubes due to the small spin-orbit coupling of carbon; the high Fermi velocity in nanotubes that limits the carrier dwell time; the high spin polarization in the manganite electrodes, which remains high right up to the manganite-nanotube interface; and the resistance of the interfacial barrier for spin injection. We support these conclusions regarding the interface using density functional theory calculations. The success of our experiments with such chemically and geometrically different materials should inspire new avenues in materials selection for future spintronics applications.
dc.languageeng
dc.publisherNature Publishing Group
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/nature05507
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature05507
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSPINTRONICS
dc.subjectAB INITIO
dc.subjectNANOTUBES
dc.subjectMANGANITES
dc.titleTransformation of spin information into large electrical signals using carbon nanotubes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución