dc.creatorFranco, Vanina Gisela
dc.creatorPerín, Juan C.
dc.creatorMantovani, Victor Eduardo
dc.creatorGoicoechea, Hector Casimiro
dc.date.accessioned2020-06-03T14:01:22Z
dc.date.accessioned2022-10-15T11:47:01Z
dc.date.available2020-06-03T14:01:22Z
dc.date.available2022-10-15T11:47:01Z
dc.date.created2020-06-03T14:01:22Z
dc.date.issued2006-01
dc.identifierFranco, Vanina Gisela; Perín, Juan C.; Mantovani, Victor Eduardo; Goicoechea, Hector Casimiro; Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection; Elsevier Science; Talanta; 68; 3; 1-2006; 1005-1012
dc.identifier0039-9140
dc.identifierhttp://hdl.handle.net/11336/106574
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4382487
dc.description.abstractAn experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determinationwas calculated by analysing spiked real fermentation samples (recoveries ca. 115%).
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.talanta.2005.07.003
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBIOPROCESS
dc.subjectMULTIVARIATE
dc.subjectCALIBRATION
dc.titleMonitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución