dc.creatorOrellana, Esteban
dc.creatorDavies Sala, Carol Giselle
dc.creatorGuerrero, Leandro Demián
dc.creatorVardé, Ignacio
dc.creatorAltina, Melisa Guadalupe
dc.creatorLorenzo, María Cielo
dc.creatorFiguerola, Eva Lucia Margarita
dc.creatorPontiggia, Rodrigo Martin
dc.creatorErijman, Leonardo
dc.date.accessioned2020-05-12T17:36:39Z
dc.date.accessioned2022-10-15T11:46:17Z
dc.date.available2020-05-12T17:36:39Z
dc.date.available2022-10-15T11:46:17Z
dc.date.created2020-05-12T17:36:39Z
dc.date.issued2019-06-15
dc.identifierOrellana, Esteban; Davies Sala, Carol Giselle; Guerrero, Leandro Demián; Vardé, Ignacio; Altina, Melisa Guadalupe; et al.; Microbiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste; IWA Publishing; Water Science And Technology; 79; 10; 15-6-2019; 1956-1965
dc.identifier0273-1223
dc.identifierhttp://hdl.handle.net/11336/104897
dc.identifier1996-9732
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4382422
dc.description.abstractAddition of food waste (FW) as a co-substrate in anaerobic digesters of wastewater treatment plants is a desirable strategy towards achievement of the potential of wastewater treatment plants to become energy-neutral, diverting at the same time organic waste from landfills. Because substrate type is a driver of variations in phylogenetic structure of digester microbiomes, it is critical to understand how microbial communities respond to changes in substrate composition and concentration. In this work, high throughput sequencing was used to monitor the dynamics of microbiome changes in four parallel lab-scale anaerobic digesters treating sewage sludge during acclimation to an increasing amount of food waste. A co-occurrence network was constructed using data from 49 metagenomes sampled over the 161 days of the digesters´ operation. More than half of the nodes in the network were clustered in two major modules, i.e. groups of highly interconnected taxa that had much fewer connections with taxa outside the group. The dynamics of co-occurrence networks evidenced shifts that occurred within microbial communities due to the addition of food waste in the co-digestion process. A diverse and reproducible group of hydrolytic and fermentative bacteria, syntrophic bacteria and methanogenic archaea appeared to grow in a concerted fashion to allow stable performance of anaerobic co-digestion at high FW.
dc.languageeng
dc.publisherIWA Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://iwaponline.com/wst/article/79/10/1956/67929/Microbiome-network-analysis-of-cooccurrence
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2166/wst.2019.194
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectANAEROBIC DIGESTION
dc.subjectCO-DIGESTION
dc.subjectFOOD WASTE
dc.subjectMICROBIOME
dc.subjectNETWORK ANALYSIS
dc.subjectSEWAGE SLUDGE
dc.titleMicrobiome network analysis of co-occurrence patterns in anaerobic co-digestion of sewage sludge and food waste
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución