dc.creatorAvendaño, Martín
dc.creatorKrick, Teresa Elena Genoveva
dc.creatorSombra, Martín
dc.date.accessioned2020-11-06T20:48:32Z
dc.date.accessioned2022-10-15T11:39:21Z
dc.date.available2020-11-06T20:48:32Z
dc.date.available2022-10-15T11:39:21Z
dc.date.created2020-11-06T20:48:32Z
dc.date.issued2007-12
dc.identifierAvendaño, Martín; Krick, Teresa Elena Genoveva; Sombra, Martín; Factoring bivariate sparse (lacunary) polynomials; Academic Press Inc Elsevier Science; Journal Of Complexity; 23; 2; 12-2007; 193-216
dc.identifier0885-064X
dc.identifierhttp://hdl.handle.net/11336/117850
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4381828
dc.description.abstractWe present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K [x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial over the rationals, in the bit length of the sparse encoding of the input and in d. Moreover, we show that the factors over over(Q, -) of degree ≤ d which are not binomials can also be computed in time polynomial in the sparse length of the input and in d. © 2006 Elsevier Inc. All rights reserved.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0885064X06000471
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jco.2006.06.002
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHEIGHT OF POINTS
dc.subjectLACUNARY (SPARSE) POLYNOMIALS
dc.subjectLEHMER'S PROBLEM
dc.subjectPOLYNOMIAL FACTORIZATION
dc.titleFactoring bivariate sparse (lacunary) polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución