dc.creatorCornejo, Juan Manuel
dc.creatorSankappanavar, Hanamantagouda P.
dc.date.accessioned2021-08-04T23:22:14Z
dc.date.accessioned2022-10-15T11:37:46Z
dc.date.available2021-08-04T23:22:14Z
dc.date.available2022-10-15T11:37:46Z
dc.date.created2021-08-04T23:22:14Z
dc.date.issued2019-06-30
dc.identifierCornejo, Juan Manuel; Sankappanavar, Hanamantagouda P.; Semi-Heyting Algebras and Identities of Associative Type; University of Lodz; Bulletin Of The Section Of Logic; 48; 2; 30-6-2019; 117-135
dc.identifier0138-0680
dc.identifierhttp://hdl.handle.net/11336/137819
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4381678
dc.description.abstractAn algebra A = ⟨A, ∨, ∧, →, 0, 1⟩ is a semi-Heyting algebra if ⟨A, ∨, ∧, 0, 1⟩ is a bounded lattice, and it satisfies the identities: x ∧ (x → y) ≈ x ∧ y, x ∧ (y → z) ≈ x ∧ [(x ∧ y) → (x ∧ z)], and x → x ≈ 1. ℋ denotes the variety of semi-Heyting algebras. Semi-Heyting algebras were introduced by the second author as an abstraction from Heyting algebras. They share several important properties with Heyting algebras. An identity of associative type of length 3 is a groupoid identity, both sides of which contain the same three (distinct) variables that occur in any order and that are grouped in one of the two (obvious) ways. A subvariety of ℋ is of associative type of length 3 if it is defined by a single identity of associative type of length 3. In this paper we describe all the distinct subvarieties of the variety ℋ of asociative type of length 3. Our main result shows that there are 3 such subvarities of ℋ.
dc.languageeng
dc.publisherUniversity of Lodz
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://czasopisma.uni.lodz.pl/bulletin/article/view/5436
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.18778/0138-0680.48.2.03
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectSEMI-HEYTING ALGEBRA
dc.subjectHEYTING ALGEBRA
dc.subjectIDENTITY OF ASSOCIATIVE TYPE
dc.subjectSUBVARIETY OF ASSOCIATIVE TYPE
dc.titleSemi-Heyting Algebras and Identities of Associative Type
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución