dc.creatorBriozzo, Adriana Clotilde
dc.date.accessioned2022-04-11T19:21:33Z
dc.date.accessioned2022-10-15T11:37:10Z
dc.date.available2022-04-11T19:21:33Z
dc.date.available2022-10-15T11:37:10Z
dc.date.created2022-04-11T19:21:33Z
dc.date.issued2020-05
dc.identifierBriozzo, Adriana Clotilde; Supercooled Stefan problem with a Neumann type boundary condition; Texas State University, Department of Mathematics; Electronic Journal of Differential Equations; 2020; 49; 5-2020; 1-14
dc.identifier1072-6691
dc.identifierhttp://hdl.handle.net/11336/154969
dc.identifier1550-6150
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4381620
dc.description.abstractWe consider a supercooled one-dimensional Stefan problem with a Neumann boundary condition and a variable thermal diffusivity. We establish a necessary and sufficient condition for the heat flux at the fixed face x = 0, in order to obtain existence and uniqueness of a similarity type solution. Moreover we over-specified the fixed face x = 0 by a Dirichlet boundary condition aiming at the simultaneous determination of one or two thermal coefficients.
dc.languageeng
dc.publisherTexas State University, Department of Mathematics
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2020/49/abstr.html
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://digital.library.txstate.edu/handle/10877/14556
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectStefan problem
dc.subjectSupercooling;
dc.subjectNon-linear thermal diffusivity
dc.subjectDetermination of thermal coefficient.
dc.titleSupercooled Stefan problem with a Neumann type boundary condition
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución