dc.creatorScioli Montoto, Sebastián
dc.creatorMuraca, Giuliana Sabrina
dc.creatorDi Ianni, Mauricio Emiliano
dc.creatorCouyoupetrou, Manuel
dc.creatorPesce, Guido Oscar
dc.creatorIslan, German Abel
dc.creatorChain, Cecilia Yamil
dc.creatorVela, Maria Elena
dc.creatorRuiz, María Esperanza
dc.creatorTalevi, Alan
dc.creatorCastro, Guillermo Raul
dc.date.accessioned2022-08-05T16:36:41Z
dc.date.accessioned2022-10-15T11:36:45Z
dc.date.available2022-08-05T16:36:41Z
dc.date.available2022-10-15T11:36:45Z
dc.date.created2022-08-05T16:36:41Z
dc.date.issued2021-06
dc.identifierScioli Montoto, Sebastián; Muraca, Giuliana Sabrina; Di Ianni, Mauricio Emiliano; Couyoupetrou, Manuel; Pesce, Guido Oscar; et al.; Preparation, physicochemical and biopharmaceutical characterization of oxcarbazepine-loaded nanostructured lipid carriers as potential antiepileptic devices; Editions Sante; Journal of Drug Delivery Science and Technology; 63; 102470; 6-2021; 1-8
dc.identifier1773-2247
dc.identifierhttp://hdl.handle.net/11336/164404
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4381579
dc.description.abstractEpilepsy is the second most common chronic central nervous system disorder. Oxcarbazepine (OXC) is an antiepileptic drug with low solubility in aqueous media but is used for the treatment of both focal and generalized seizures. Studies of OXC encapsulation in nanostructured lipid carriers (NLCs) composed of cetyl palmitate and oleic acid coated with polyvinyl alcohol (PVA) or chitosan (Ch) to obtain nanoparticles with negative and positive surface charge, respectively, are reported. All NLCs displayed 97%–98% OXC encapsulation efficiency, 14.5%–14.6% drug loading, 121.8–212.3 nm size range, and polydispersity indexes between 0.248 and 0.282 nm, depending on their composition. The homogeneity of the NLCs was confirmed by electron microscopy. The OXC release from the NLCs was analyzed by Higuchi, Baker-Londsdale, and Korsmeyer-Peppas structured models. The Korsmeyer-Peppas model provides the best data fit (R2 > 0.98), and n > 0.58, suggesting a mechanism driven by non-Fickian molecular release. In vitro permeability studies using MDCK-MDR1 cells revealed enhanced permeability of the encapsulated drug compared with free OXC. Surface plasmon resonance tested in the presence of BSA, IgG, and IgM, commonly found in human plasma, revealed no interaction with naked and PVA-coated NLCs. These promising results allow considering further in vivo studies for efficient delivery of OXC.
dc.languageeng
dc.publisherEditions Sante
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1773224721001507
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jddst.2021.102470
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBIOPHARMACEUTICAL CHARACTERIZATION
dc.subjectCENTRAL NERVOUS SYSTEM (CNS)
dc.subjectCHITOSAN
dc.subjectLIPID NANOPARTICLES (LNP)
dc.subjectOXCARBAZEPINE
dc.subjectPHYSICAL CHARACTERIZATION
dc.titlePreparation, physicochemical and biopharmaceutical characterization of oxcarbazepine-loaded nanostructured lipid carriers as potential antiepileptic devices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución