dc.creatorSabando, María Virginia
dc.creatorUlbrich, Pavol
dc.creatorSelzer, Matias Nicolas
dc.creatorByska, Jan
dc.creatorMican, Jan
dc.creatorPonzoni, Ignacio
dc.creatorSoto, Axel Juan
dc.creatorGanuza, María Luján
dc.creatorKozlikova, Barbora
dc.date.accessioned2021-03-01T14:26:52Z
dc.date.accessioned2022-10-15T11:29:54Z
dc.date.available2021-03-01T14:26:52Z
dc.date.available2022-10-15T11:29:54Z
dc.date.created2021-03-01T14:26:52Z
dc.date.issued2021-02-13
dc.identifierSabando, María Virginia; Ulbrich, Pavol; Selzer, Matias Nicolas; Byska, Jan; Mican, Jan; et al.; ChemVA: Interactive visual analysis of chemical compound similarity in virtual screening; IEEE Computer Society; IEEE Transactions on Visualization and Computer Graphics; 27; 2; 13-2-2021; 891-901
dc.identifier1077-2626
dc.identifierhttp://hdl.handle.net/11336/126963
dc.identifier1941-0506
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4381015
dc.description.abstractIn the modern drug discovery process, medicinal chemists deal with the complexity of analysis of large ensembles of candidate molecules. Computational tools, such as dimensionality reduction (DR) and classification, are commonly used to efficiently process the multidimensional space of features. These underlying calculations often hinder interpretability of results and prevent experts from assessing the impact of individual molecular features on the resulting representations. To provide a solution for scrutinizing such complex data, we introduce ChemVA, an interactive application for the visual exploration of large molecular ensembles and their features. Our tool consists of multiple coordinated views: Hexagonal view, Detail view, 3D view, Table view, and a newly proposed Difference view designed for the comparison of DR projections. These views display DR projections combined with biological activity, selected molecular features, and confidence scores for each of these projections. This conjunction of views allows the user to drill down through the dataset and to efficiently select candidate compounds. Our approach was evaluated on two case studies of finding structurally similar ligands with similar binding affinity to a target protein, as well as on an external qualitative evaluation. The results suggest that our system allows effective visual inspection and comparison of different high-dimensional molecular representations. Furthermore, ChemVA assists in the identification of candidate compounds while providing information on the certainty behind different molecular representations.
dc.languageeng
dc.publisherIEEE Computer Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9222282/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/ 10.1109/TVCG.2020.3030438
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2008.13150
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTools
dc.subjectCompounds
dc.subjectVisualization
dc.subjectTwo dimensional displays
dc.subjectDrugs
dc.subjectThree-dimensional displays
dc.subjectChemicals
dc.titleChemVA: Interactive visual analysis of chemical compound similarity in virtual screening
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución