dc.creator | Corach, Gustavo | |
dc.creator | Stojanoff, Demetrio | |
dc.date.accessioned | 2020-08-05T15:33:32Z | |
dc.date.accessioned | 2022-10-15T11:21:11Z | |
dc.date.available | 2020-08-05T15:33:32Z | |
dc.date.available | 2022-10-15T11:21:11Z | |
dc.date.created | 2020-08-05T15:33:32Z | |
dc.date.issued | 2001-08 | |
dc.identifier | Corach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517 | |
dc.identifier | 0024-3795 | |
dc.identifier | http://hdl.handle.net/11336/110894 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4380216 | |
dc.description.abstract | For each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0. | |
dc.language | eng | |
dc.publisher | Elsevier Science Inc | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihub | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/S0024-3795(01)00306-8 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | HADAMARD PRODUCT | |
dc.subject | POSITIVE SEMIDEFINITE MATRICES | |
dc.subject | NORM INEQUALITIES | |
dc.title | Index of Hadamard multiplication by positive matrices II | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |