dc.creatorCorach, Gustavo
dc.creatorStojanoff, Demetrio
dc.date.accessioned2020-08-05T15:33:32Z
dc.date.accessioned2022-10-15T11:21:11Z
dc.date.available2020-08-05T15:33:32Z
dc.date.available2022-10-15T11:21:11Z
dc.date.created2020-08-05T15:33:32Z
dc.date.issued2001-08
dc.identifierCorach, Gustavo; Stojanoff, Demetrio; Index of Hadamard multiplication by positive matrices II; Elsevier Science Inc; Linear Algebra and its Applications; 332-334; 8-2001; 503-517
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/110894
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4380216
dc.description.abstractFor each n × n positive semidefinite matrix A we define the minimal index I (A)=max{λ ⪰ 0 : A ο B ⪰ λB for all B ⪰ 0} and, for each norm N, the N-index I_N(A) = min{N(A ο B): B ⪰0 and N(B) = 1}, where A ο B = [aij bij] is the Hadamard or Schur product of A =[aij] and B = [bij] and B ⪰ 0 means that B is a positive semidefinite matrix. A comparison between these indexes is done, for different choices of the norm N. As an application we find,for each bounded invertible selfadjoint operator S on a Hilbert space, the best constant M(S)such that ∥ST S + S^−1T S^−1∥ M(S)∥T∥ for all T⪰ 0.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003068?via%3Dihub
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/S0024-3795(01)00306-8
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHADAMARD PRODUCT
dc.subjectPOSITIVE SEMIDEFINITE MATRICES
dc.subjectNORM INEQUALITIES
dc.titleIndex of Hadamard multiplication by positive matrices II
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución