dc.creatorCortiñas, Guillermo Horacio
dc.creatorCuntz, Joachim
dc.creatorMeyer, Ralf
dc.creatorTamme, Georg
dc.date.accessioned2019-11-15T14:52:34Z
dc.date.accessioned2022-10-15T11:19:52Z
dc.date.available2019-11-15T14:52:34Z
dc.date.available2022-10-15T11:19:52Z
dc.date.created2019-11-15T14:52:34Z
dc.date.issued2018-06
dc.identifierCortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-1245
dc.identifierhttp://hdl.handle.net/11336/89051
dc.identifier1431-0643
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4380091
dc.description.abstractLet V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.
dc.languageeng
dc.publisherUniversität Bielefeld
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.elibm.org/article/10011879
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.25537/dm.2018v23.1197-1245
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRigid cohomology
dc.subjectCyclic homology
dc.subjectBornological analysis
dc.subjectNonarchimedean analysis
dc.titleNonarchimedean bornologies, cyclic homology and rigid cohomology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución