Argentina | info:eu-repo/semantics/article
dc.creatorBarrozo, María Fernanda
dc.creatorLevis, Fabián Eduardo
dc.creatorRidolfi, Claudia Vanina
dc.date.accessioned2021-07-27T18:05:04Z
dc.date.accessioned2022-10-15T11:11:03Z
dc.date.available2021-07-27T18:05:04Z
dc.date.available2022-10-15T11:11:03Z
dc.date.created2021-07-27T18:05:04Z
dc.date.issued2021-01-09
dc.identifierBarrozo, María Fernanda; Levis, Fabián Eduardo; Ridolfi, Claudia Vanina; A projection-valued measure for a countable iterated function system; Birkhauser Verlag Ag; Results In Mathematics; 76; 1; 9-1-2021; 1-17
dc.identifier1422-6383
dc.identifierhttp://hdl.handle.net/11336/137082
dc.identifier1420-9012
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4379363
dc.description.abstractDavison in 2015 used the famous Banach Fixed Point Theorem to prove that a certain class of iterated function systems generated counterparts of the Hutchinson measure in the space of projection-valued measures. In this paper, we generalize this result by considering iterated function systems with infinitely many maps.
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00025-020-01334-w
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00025-020-01334-w
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCOUNTABLE ITERATED FUNCTION SYSTEM
dc.subjectFIXED POINT
dc.subjectKANTOROVICH METRIC
dc.subjectPROJECTION-VALUED MEASURE
dc.titleA projection-valued measure for a countable iterated function system
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución