dc.creatorAcri, Emiliano Francisco
dc.creatorBonatto, Marco
dc.date.accessioned2021-10-19T16:18:18Z
dc.date.accessioned2022-10-15T11:06:18Z
dc.date.available2021-10-19T16:18:18Z
dc.date.available2022-10-15T11:06:18Z
dc.date.created2021-10-19T16:18:18Z
dc.date.issued2020-01
dc.identifierAcri, Emiliano Francisco; Bonatto, Marco; Skew braces of size pq; Taylor & Francis; Communications In Algebra; 48; 5; 1-2020; 1872-1881
dc.identifier0092-7872
dc.identifierhttp://hdl.handle.net/11336/144303
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4378928
dc.description.abstractWe construct all skew braces of size pq (where p > q are primes) by using Byott’s classification of Hopf–Galois extensions of the same degree. For (Formula presented.) there exists only one skew brace which is the trivial one. When (Formula presented.) we have (Formula presented.) skew braces, two of which are of cyclic type (so, contained in Rump’s classification) and 2q of non-abelian type.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2019.1709480
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2019.1709480
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectHOPF–GALOIS
dc.subjectSET-THEORETIC SOLUTION
dc.subjectSKEW BRACE
dc.subjectYANG–BAXTER EQUATION
dc.titleSkew braces of size pq
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución