dc.creator | Acri, Emiliano Francisco | |
dc.creator | Bonatto, Marco | |
dc.date.accessioned | 2021-10-19T16:18:18Z | |
dc.date.accessioned | 2022-10-15T11:06:18Z | |
dc.date.available | 2021-10-19T16:18:18Z | |
dc.date.available | 2022-10-15T11:06:18Z | |
dc.date.created | 2021-10-19T16:18:18Z | |
dc.date.issued | 2020-01 | |
dc.identifier | Acri, Emiliano Francisco; Bonatto, Marco; Skew braces of size pq; Taylor & Francis; Communications In Algebra; 48; 5; 1-2020; 1872-1881 | |
dc.identifier | 0092-7872 | |
dc.identifier | http://hdl.handle.net/11336/144303 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4378928 | |
dc.description.abstract | We construct all skew braces of size pq (where p > q are primes) by using Byott’s classification of Hopf–Galois extensions of the same degree. For (Formula presented.) there exists only one skew brace which is the trivial one. When (Formula presented.) we have (Formula presented.) skew braces, two of which are of cyclic type (so, contained in Rump’s classification) and 2q of non-abelian type. | |
dc.language | eng | |
dc.publisher | Taylor & Francis | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2019.1709480 | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/00927872.2019.1709480 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | HOPF–GALOIS | |
dc.subject | SET-THEORETIC SOLUTION | |
dc.subject | SKEW BRACE | |
dc.subject | YANG–BAXTER EQUATION | |
dc.title | Skew braces of size pq | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |