dc.creatorGalicer, Daniel Eric
dc.creatorMansilla, Martin Ignacio
dc.creatorMuro, Luis Santiago Miguel
dc.date.accessioned2020-11-05T14:44:12Z
dc.date.accessioned2022-10-15T11:05:00Z
dc.date.available2020-11-05T14:44:12Z
dc.date.available2022-10-15T11:05:00Z
dc.date.created2020-11-05T14:44:12Z
dc.date.issued2019-11
dc.identifierGalicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; Mixed Bohr radius in several variables; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 2; 11-2019; 777-796
dc.identifier0002-9947
dc.identifierhttp://hdl.handle.net/11336/117679
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4378815
dc.description.abstractLet K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/tran/7870
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-02/S0002-9947-2019-07870-4/
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.08077
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBOHR RADIUS
dc.subjectDOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS
dc.subjectHOMOGENEOUS POLYNOMIALS
dc.subjectPOWER SERIES
dc.subjectUNCONDITIONAL BASES
dc.titleMixed Bohr radius in several variables
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución