dc.creator | Galicer, Daniel Eric | |
dc.creator | Mansilla, Martin Ignacio | |
dc.creator | Muro, Luis Santiago Miguel | |
dc.date.accessioned | 2020-11-05T14:44:12Z | |
dc.date.accessioned | 2022-10-15T11:05:00Z | |
dc.date.available | 2020-11-05T14:44:12Z | |
dc.date.available | 2022-10-15T11:05:00Z | |
dc.date.created | 2020-11-05T14:44:12Z | |
dc.date.issued | 2019-11 | |
dc.identifier | Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; Mixed Bohr radius in several variables; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 2; 11-2019; 777-796 | |
dc.identifier | 0002-9947 | |
dc.identifier | http://hdl.handle.net/11336/117679 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4378815 | |
dc.description.abstract | Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity. | |
dc.language | eng | |
dc.publisher | American Mathematical Society | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/tran/7870 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-02/S0002-9947-2019-07870-4/ | |
dc.relation | info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.08077 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | BOHR RADIUS | |
dc.subject | DOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS | |
dc.subject | HOMOGENEOUS POLYNOMIALS | |
dc.subject | POWER SERIES | |
dc.subject | UNCONDITIONAL BASES | |
dc.title | Mixed Bohr radius in several variables | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |