dc.creatorPalumbo, Félix Roberto Mario
dc.creatorLiang, Xianhu
dc.creatorYuan, Bin
dc.creatorShi, Yuanyuan
dc.creatorHui, Fei
dc.creatorVillena, Marco A.
dc.creatorLanza, Mario
dc.date.accessioned2021-06-18T16:16:17Z
dc.date.accessioned2022-10-15T11:04:11Z
dc.date.available2021-06-18T16:16:17Z
dc.date.available2022-10-15T11:04:11Z
dc.date.created2021-06-18T16:16:17Z
dc.date.issued2018-03
dc.identifierPalumbo, Félix Roberto Mario; Liang, Xianhu; Yuan, Bin; Shi, Yuanyuan; Hui, Fei; et al.; Bimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric; Blackwell Publishing; Advanced Electronic Materials; 4; 3; 3-2018; 1-8
dc.identifierhttp://hdl.handle.net/11336/134568
dc.identifier2199-160X
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4378736
dc.description.abstractMultilayer hexagonal boron nitride (h-BN) is an insulating 2D material that shows good interaction with graphene and MoS2, and it is considered a very promising dielectric for future 2D-materials-based electronic devices. Previous studies analyzed the dielectric properties of thick (>10 nm) mechanically exfoliated h-BN nanoflakes (diameter < 20 μm) via conductive atomic force microscopy and applying very high voltages (>10 V); however, these methods are not scalable. In this work, the first device-level reliability study of large area h-BN dielectric stacks (grown via chemical vapor deposition) is presented, and the complete dielectric breakdown (BD) process is described. The experiments and calculations indicate that the BD process in metal/h-BN/metal devices starts with a progressive current increase across the h-BN stack until current densities up to 0.1 A cm−2 are reached. After that, the currents increase by sudden steps, which can be large (>1 order of magnitude, related to the BD of one/few h-BN layers) or small (<1 order of magnitude, related to the lateral propagation of the BD). The bimodal BD process of h-BN here presented (which cannot be detected via conductive atomic force microscopy) is essential to understand the reliability of 2D-material-based electronic devices using h-BN as dielectric.
dc.languageeng
dc.publisherBlackwell Publishing
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/aelm.201700506
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201700506
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCHARGE TRAPPING
dc.subjectDIELECTRIC BREAKDOWN (BD)
dc.subjectHEXAGONAL BORON NITRIDE (H-BN)
dc.subjectRELIABILITY
dc.subjectSTRESS-INDUCED LEAKAGE CURRENT (SILC)
dc.titleBimodal Dielectric Breakdown in Electronic Devices Using Chemical Vapor Deposited Hexagonal Boron Nitride as Dielectric
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución