dc.creatorCendra, Hernan
dc.creatorMarsden, Jerrold E.
dc.creatorPekarsky, Sergey
dc.creatorRatiu, Tudor S.
dc.date.accessioned2020-02-28T14:30:14Z
dc.date.accessioned2022-10-15T10:28:05Z
dc.date.available2020-02-28T14:30:14Z
dc.date.available2022-10-15T10:28:05Z
dc.date.created2020-02-28T14:30:14Z
dc.date.issued2003-07
dc.identifierCendra, Hernan; Marsden, Jerrold E.; Pekarsky, Sergey; Ratiu, Tudor S.; Variational Principles for Lie-Poisson and Hamilton-Poincaré Equations; Independent Univ Moscow; Moscow Mathematical Journal; 3; 3; 7-2003; 833-867
dc.identifier1609-3321
dc.identifierhttp://hdl.handle.net/11336/98567
dc.identifier1609-4514
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4375622
dc.description.abstractAs is well-known, there is a variational principle for theEuler–Poincar ́e equations on a Lie algebragof a Lie groupGobtainedby reducing Hamilton’s principle onGby the action ofGby, say, leftmultiplication. The purpose of this paper is to give a variational prin-ciple for the Lie–Poisson equations ong∗, the dual ofg, and also togeneralize this construction.The more general situation is that in which the original configura-tion space is not a Lie group, but rather a configuration manifoldQon which a Lie groupGacts freely and properly, so thatQ→Q/Gbecomes a principal bundle. Starting with a Lagrangian system onTQinvariant under the tangent lifted action ofG, the reduced equations on(TQ)/G, appropriately identified, are the Lagrange–Poincar ́e equations.Similarly, if we start with a Hamiltonian system onT∗Q, invariant un-der the cotangent lifted action ofG, the resulting reduced equations on(T∗Q)/Gare called the Hamilton–Poincar ́e equations.Amongst our new results, we derive a variational structure for theHamilton–Poincar ́e equations, give a formula for the Poisson structureon these reduced spaces that simplifies previous formulas of Montgomery,and give a new representation for the symplectic structure on the asso-ciated symplectic leaves. We illustrate the formalism with a simple, butinteresting example, that of a rigid body with internal rotors.
dc.languageeng
dc.publisherIndependent Univ Moscow
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.cds.caltech.edu/~marsden/bib/2003/19-CeMaPeRa2003/CeMaPeRa2003.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectVARIATIONAL PRINCIPLES
dc.subjectLIEPOISSON EQUATIONS
dc.subjectHAMILTONPOINCARE EQUATIONS
dc.titleVariational Principles for Lie-Poisson and Hamilton-Poincaré Equations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución