dc.creatorVallarino, José G.
dc.creatorKubiszewski Jakubiak, Szymon
dc.creatorRuf, Stephanie
dc.creatorRößner, Margit
dc.creatorTimm, Stefan
dc.creatorBauwe, Hermann
dc.creatorCarrari, Fernando Oscar
dc.creatorRentsch, Doris
dc.creatorBock, Ralph
dc.creatorSweetlove, Lee J.
dc.creatorFernie, Alisdair R.
dc.date.accessioned2021-10-01T23:29:41Z
dc.date.accessioned2022-10-15T10:26:55Z
dc.date.available2021-10-01T23:29:41Z
dc.date.available2022-10-15T10:26:55Z
dc.date.created2021-10-01T23:29:41Z
dc.date.issued2020-12
dc.identifierVallarino, José G.; Kubiszewski Jakubiak, Szymon; Ruf, Stephanie; Rößner, Margit; Timm, Stefan; et al.; Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%; Nature Research; Scientific Reports; 10; 1; 12-2020; 1-18
dc.identifier2045-2322
dc.identifierhttp://hdl.handle.net/11336/142320
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4375526
dc.description.abstractThe capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.
dc.languageeng
dc.publisherNature Research
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41598-020-73709-6
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-020-73709-6
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMulti‑gene
dc.subjectMetabolic engineering
dc.subjectTomato plants
dc.titleMulti-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución