dc.creatorFerraty, Frédéric
dc.creatorKudraszow, Nadia Laura
dc.creatorVieu, Philippe
dc.date.accessioned2019-07-16T19:23:50Z
dc.date.accessioned2022-10-15T10:16:45Z
dc.date.available2019-07-16T19:23:50Z
dc.date.available2022-10-15T10:16:45Z
dc.date.created2019-07-16T19:23:50Z
dc.date.issued2012-06
dc.identifierFerraty, Frédéric; Kudraszow, Nadia Laura; Vieu, Philippe; Nonparametric estimation of a surrogate density function in infinite-dimensional spaces; Taylor & Francis Ltd; Journal Of Nonparametric Statistics; 24; 2; 6-2012; 447-464
dc.identifier1048-5252
dc.identifierhttp://hdl.handle.net/11336/79667
dc.identifier1029-0311
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4374641
dc.description.abstractA density function is generally not well defined in functional data context, but we can define a surrogate of a probability density, also called pseudo-density, when the small ball probability can be approximated by the product of two independent functions, one depending only on the centre of the ball. The aim of this paper is to study two kernel methods for estimating a surrogate probability density for functional data. We present asymptotic properties of these estimators: the convergence in probability and their rates. Simulations are given, including a functional version of smoother bootstrap selection of the parameters of the estimate.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10485252.2012.671943
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/10485252.2012.671943
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFUNCTIONAL DATA
dc.subjectK-NEAREST NEIGHBOUR METHOD
dc.subjectKERNEL ESTIMATORS
dc.subjectSMALL BALL PROBABILITY
dc.subjectSMOOTHER BOOTSTRAP
dc.titleNonparametric estimation of a surrogate density function in infinite-dimensional spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución