dc.creatorJespersen, Martin Closter
dc.creatorMahajan, Swapnil
dc.creatorPeters, Bjoern
dc.creatorNielsen, Morten
dc.creatorMarcatili, Paolo
dc.date.accessioned2020-12-21T18:10:07Z
dc.date.accessioned2022-10-15T10:14:22Z
dc.date.available2020-12-21T18:10:07Z
dc.date.available2022-10-15T10:14:22Z
dc.date.created2020-12-21T18:10:07Z
dc.date.issued2019-02
dc.identifierJespersen, Martin Closter; Mahajan, Swapnil; Peters, Bjoern; Nielsen, Morten; Marcatili, Paolo; Antibody specific B-cell epitope predictions: Leveraging information from antibody-antigen protein complexes; Frontiers Media S.A.; Frontiers in Immunology; 10; FEB; 2-2019; 1-10
dc.identifier1664-3224
dc.identifierhttp://hdl.handle.net/11336/120962
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4374426
dc.description.abstractB-cells can neutralize pathogenic molecules by targeting them with extreme specificity using receptors secreted or expressed on their surface (antibodies). This is achieved via molecular interactions between the paratope (i.e., the antibody residues involved in the binding) and the interacting region (epitope) of its target molecule (antigen). Discerning the rules that define this specificity would have profound implications for our understanding of humoral immunogenicity and its applications. The aim of this work is to produce improved, antibody-specific epitope predictions by exploiting features derived from the antigens and their cognate antibodies structures, and combining them using statistical and machine learning algorithms. We have identified several geometric and physicochemical features that are correlated in interacting paratopes and epitopes, used them to develop a Monte Carlo algorithm to generate putative epitopes-paratope pairs, and train a machine-learning model to score them. We show that, by including the structural and physicochemical properties of the paratope, we improve the prediction of the target of a given B-cell receptor. Moreover, we demonstrate a gain in predictive power both in terms of identifying the cognate antigen target for a given antibody and the antibody target for a given antigen, exceeding the results of other available tools.
dc.languageeng
dc.publisherFrontiers Media S.A.
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3389/fimmu.2019.00298
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fimmu.2019.00298/full
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectANTIBODY
dc.subjectANTIBODY SPECIFIC EPITOPE PREDICTION
dc.subjectANTIGEN
dc.subjectB CELL EPITOPE
dc.subjectPARATOPE
dc.subjectPREDICTION
dc.titleAntibody specific B-cell epitope predictions: Leveraging information from antibody-antigen protein complexes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución