dc.creatorMalamud, Florencia
dc.creatorGuerrero, L. M.
dc.creatorla Roca, Paulo Matías
dc.creatorSade Lichtmann, Marcos Leonel
dc.creatorBaruj, Alberto Leonardo
dc.date.accessioned2019-02-14T20:32:01Z
dc.date.accessioned2022-10-15T10:13:39Z
dc.date.available2019-02-14T20:32:01Z
dc.date.available2022-10-15T10:13:39Z
dc.date.created2019-02-14T20:32:01Z
dc.date.issued2018-02-10
dc.identifierMalamud, Florencia; Guerrero, L. M.; la Roca, Paulo Matías; Sade Lichtmann, Marcos Leonel; Baruj, Alberto Leonardo; Role of Mn and Cr on structural parameters and strain energy during FCC-HCP martensitic transformation in Fe-Mn-Cr shape memory alloys; Elsevier; Materials and Design; 139; 10-2-2018; 314-323
dc.identifier0264-1275
dc.identifierhttp://hdl.handle.net/11336/70228
dc.identifier1873-4197
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4374363
dc.description.abstractFe-Mn-based alloys show the shape memory effect which is mainly related to the FCC-HCP martensitic transformation. Cr is one of the additional elements which improve the properties of these alloys. In the present work structural data are obtained for the FCC austenite, and both martensitic structures, HCP and BCC, for an extended composition range where the FCC-HCP transition takes place. Lattice parameters are determined by X-Ray diffraction measurements performed at room temperature. The volume change between the austenite and each martensitic structure plays a significant role on relevant properties for martensitic transformations, like the strain energy associated to the transition. The effect of Mn and Cr on lattice parameters and volume change between FCC and HCP is determined and modeling of the data is presented. This result allows estimating the strain energy associated to the phase change. By using this information, the strain energy contribution to the balance of energy for the HCP nucleation is discussed. The addition of Cr decreases the volume change between FCC and HCP for contents larger than 12 wt% Cr which leads to a decrease of the strain energy. Both effects favor an increased shape memory effect associated to the FCC-HCP martensitic transition.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0264127517310481
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.matdes.2017.11.017
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFe-Mn-Cr
dc.subjectLattice Parameters
dc.subjectMartensitic Transformations
dc.subjectStrain Energy
dc.subjectVolume Change
dc.titleRole of Mn and Cr on structural parameters and strain energy during FCC-HCP martensitic transformation in Fe-Mn-Cr shape memory alloys
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución