dc.creatorZozor, Steeve
dc.creatorBosyk, Gustavo Martin
dc.creatorPortesi, Mariela Adelina
dc.creatorOsán, Tristán Martín
dc.creatorLamberti, Pedro Walter
dc.date.accessioned2020-04-03T20:37:27Z
dc.date.accessioned2022-10-15T10:08:18Z
dc.date.available2020-04-03T20:37:27Z
dc.date.available2022-10-15T10:08:18Z
dc.date.created2020-04-03T20:37:27Z
dc.date.issued2015-02-17
dc.identifierZozor, Steeve; Bosyk, Gustavo Martin; Portesi, Mariela Adelina; Osán, Tristán Martín; Lamberti, Pedro Walter; Beyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums; American Physical Society; AIP Conference Proceedings; 1641; 1; 17-2-2015; 181-188
dc.identifier0094-243X
dc.identifierhttp://hdl.handle.net/11336/101955
dc.identifier1551-7616
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4373874
dc.description.abstractIn this paper we propose generalized inequalities to quantify the uncertainty principle. We deal with two observables with finite discrete spectra described by positive operator-valued measures (POVM) and with systems in mixed states. Denoting by p(A;ρ) and p(B;ρ) the probability vectors associated with observables A and B when the system is in the state ρ, we focus on relations of the form U_α(p(A;ρ))+U_β (p(B;ρ)) ≥ B_{α,β} (A,B) where U_λ is a measure of uncertainty and B is a non-trivial state-independent bound for the uncertainty sum. We propose here: (i) an extension of the usual Landau?Pollak inequality for uncertainty measures of the form U_f (p(A;ρ)) = f(max_i p_i(A;ρ)) issued from well suited metrics; our generalization comes out as a consequence of the triangle inequality. The original Landau?Pollak inequality initially proved for nondegenerate observables and pure states, appears to be the most restrictive one in terms of the maximal probabilities; (ii) an entropic formulation for which the uncertainty measure is based on generalized entropies of Rényi or Havrda?Charvát?Tsallis type: U_{g,α}(p(A;ρ)) = g(Σ_i[p_i(A;ρ)]^α)/(1−α). Our approach is based on Schur-concavity considerations and on previously derived Landau?Pollak type inequalities.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4905977
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.4905977
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGENERALIZED UNCERTAINTY RELATIONS
dc.subjectLANDAU-POLLAK TYPE INEQUALITIES
dc.subjectENTROPIC UNCERTAINTY RELATION
dc.subjectPURE AND MIXED STATES
dc.subjectPOVM
dc.titleBeyond Landau-Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución