dc.creatorFraenza, Carla Cecilia
dc.creatorMattea, Carlos
dc.creatorFarrher, German David
dc.creatorOrdikhani Seyedlar, Amín
dc.creatorStapf, Siegfried
dc.creatorAnoardo, Esteban
dc.date.accessioned2019-12-05T22:39:06Z
dc.date.accessioned2022-10-15T10:02:07Z
dc.date.available2019-12-05T22:39:06Z
dc.date.available2022-10-15T10:02:07Z
dc.date.created2019-12-05T22:39:06Z
dc.date.issued2018-08-15
dc.identifierFraenza, Carla Cecilia; Mattea, Carlos; Farrher, German David; Ordikhani Seyedlar, Amín; Stapf, Siegfried; et al.; Rouse dynamics in PEO-PPO-PEO block-copolymers in aqueous solution as observed through fast field-cycling NMR relaxometry; Elsevier; Polymer; 150; 15-8-2018; 244-253
dc.identifier0032-3861
dc.identifierhttp://hdl.handle.net/11336/91568
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4373430
dc.description.abstractWe present a proton fast field-cycling (FFC) NMR relaxometry study of the molecular dynamics in three different deuterated water-dispersed triblock copolymers of ethylene oxide (EO) and propylene oxide (PO):EO80PO27EO80(F68), EO141PO44EO141 (F108), and EO101PO56EO101(F127). Independently of the phase and molecular arrangement, bi-exponential decays of the magnetization during the spin-lattice relaxation process could be observed for F127, while mono-exponential decays were measured for F68 and F108. This fact has been attributed to the relative ratio of PEO and PPO protons for each case. In F127, each component of the magnetization decay could be associated with a particular block of the co-polymer. A direct consequence of this fact is the independent characterization of the molecular dynamics of each block. It was found that the dominant relaxation mechanism can be attributed to the Rouse model, and it seems to be independent on whether the molecules are incorporated into a micelle, or as individual unimers in the aqueous solution. The experimental results and the provided explanation are consistent with entanglement-free self-assembled structures, and a fast exchange of unimers between the micellar structure and the solvent. This particular feature was also investigated in F68 and F108, although for these cases a mono-exponential decay of the magnetization was observed. NMR relaxometry results are complemented with other relaxation experiments in the rotating frame, NMR spectroscopy and atomic-force microscopy.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0032386118306220
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.polymer.2018.07.027
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectNMR RELAXOMETRY
dc.subjectPLURONICS
dc.subjectPOLYMERIC VESICLES
dc.titleRouse dynamics in PEO-PPO-PEO block-copolymers in aqueous solution as observed through fast field-cycling NMR relaxometry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución