Argentina | info:eu-repo/semantics/article
dc.creatorGrillo, Sergio Daniel
dc.creatorPadrón, Edith
dc.date.accessioned2019-06-12T18:55:16Z
dc.date.accessioned2022-10-15T09:49:45Z
dc.date.available2019-06-12T18:55:16Z
dc.date.available2022-10-15T09:49:45Z
dc.date.created2019-06-12T18:55:16Z
dc.date.issued2016-12-01
dc.identifierGrillo, Sergio Daniel; Padrón, Edith; A Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds; Elsevier Science; Journal Of Geometry And Physics; 110; 1-12-2016; 101-129
dc.identifier0393-0440
dc.identifierhttp://hdl.handle.net/11336/78115
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4372352
dc.description.abstractIn this paper we develop, in a geometric framework, a Hamilton–Jacobi Theory for general dynamical systems. Such a theory contains the classical theory for Hamiltonian systems on a cotangent bundle and recent developments in the framework of general symplectic, Poisson and almost-Poisson manifolds (including some approaches to a Hamilton–Jacobi Theory for nonholonomic systems). Given a dynamical system, we show that every complete solution of its related Hamilton–Jacobi Equation (HJE) gives rise to a set of first integrals, and vice versa. From that, and in the context of symplectic and Poisson manifolds, a deep connection between the HJE and the (non)commutative integrability notion, and consequently the integrability by quadratures, is established. Moreover, in the same context, we find conditions on the complete solutions of the HJE that also ensures integrability by quadratures, but they are weaker than those related to the (non)commutative integrability. Examples are developed along all the paper in order to illustrate the theoretical results.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2016.07.010
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044016301760
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1512.03121
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHAMILTON–JACOBI EQUATIONS
dc.subjectINTEGRABLE SYSTEMS
dc.subjectPOISSON MANIFOLD
dc.titleA Hamilton–Jacobi Theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución