dc.creatorAimar, Hugo Alejandro
dc.creatorForzani, Liliana Maria
dc.creatorScotto, Roberto Aníbal
dc.date.accessioned2019-09-23T11:48:27Z
dc.date.accessioned2022-10-15T09:43:19Z
dc.date.available2019-09-23T11:48:27Z
dc.date.available2022-10-15T09:43:19Z
dc.date.created2019-09-23T11:48:27Z
dc.date.issued2007-12
dc.identifierAimar, Hugo Alejandro; Forzani, Liliana Maria; Scotto, Roberto Aníbal; On Riesz transforms and maximal functions in the context of Gaussian harmonic analysis; American Mathematical Society; Transactions Of The American Mathematical Society; 359; 5; 12-2007; 2137-2154
dc.identifier0002-9947
dc.identifierhttp://hdl.handle.net/11336/84070
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4371776
dc.description.abstractThe purpose of this paper is twofold. We introduce a general maximal function on the Gaussian setting which dominates the Ornstein-Uhlenbeck maximal operator and prove its weak type by using a covering lemma which is halfway between Besicovitch and Wiener. On the other hand, by taking as a starting point the generalized Cauchy-Riemann equations, we introduce a new class of Gaussian Riesz Transforms. We prove, using the maximal function defined in the first part of the paper, that unlike the ones already studied, these new Riesz Transforms are weak type independently of their orders.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.2307/20161669
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.jstor.org/stable/20161669
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGaussian Measure
dc.subjectMaximal Functions
dc.subjectSingular Integrals
dc.subjectHermie Expansions
dc.titleOn Riesz transforms and maximal functions in the context of Gaussian harmonic analysis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución