dc.creatorTamborini, Luciano Henri
dc.creatorMilitello, María Paula
dc.creatorBalach, Juan Manuel
dc.creatorMoyano, J. M.
dc.creatorBarbero, César Alfredo
dc.creatorAcevedo, Diego Fernando
dc.date.accessioned2019-02-12T17:30:19Z
dc.date.accessioned2022-10-15T09:38:29Z
dc.date.available2019-02-12T17:30:19Z
dc.date.available2022-10-15T09:38:29Z
dc.date.created2019-02-12T17:30:19Z
dc.date.issued2015-06
dc.identifierTamborini, Luciano Henri; Militello, María Paula; Balach, Juan Manuel; Moyano, J. M.; Barbero, César Alfredo; et al.; Application of sulfonated nanoporous carbons as acid catalysts for Fischer esterification reactions; Elsevier; Arabian Journal of Chemistry; 6-2015; 1-11
dc.identifier1878-5352
dc.identifierhttp://hdl.handle.net/11336/69974
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4371287
dc.description.abstractHeterogeneous acid catalysts were prepared by sulfonation of nanoporous carbons (NPCs). The NPCs were produced by pyrolysis of resorcinol-formaldehyde nanoporous resins (NPRs). The NPRs were synthesized as wet gels by condensation of resorcinol and formaldehyde in a sol-gel polycondensation using Na2CO3 as catalyst. A cationic polyelectrolyte (poly(diallyl dimethyl ammonium chloride)) was used as pore stabilizer, allowing to dry the gels in air without any special procedures. Five NPRs with different properties were synthesized by varying the monomer to catalyst ratio (Resorcinol/Na2CO3, R/C). The morphological and textural characterizations of the NPCs were performed by scanning electron microscopy and nitrogen adsorption-desorption isotherms. The results indicate that using a molar ratio of R/C=200, a nanoporous carbon NPC with large surface area (695m2/g) is obtained. This NPC was sulfonated by reaction with three different sulfonating agents: (i) concentrated sulfuric acid; (ii) fuming sulfuric acid and (iii) chlorosulfonic acid in order to obtain a novel Fischer esterification catalyst. The amount of acid groups attached to the NPC surface was determined by titration using a modified Boehm method. The catalytic activity, for Fischer esterification reaction of different sulfonated NPCs, was compared with sulfonated NPRs, sulfonated commercial porous carbons and polymeric acid catalyst (cationic ion exchange resins, sulfonated fluoropolymers). The modification of NPCs with concentrated sulfuric acid seems to render the materials with more catalytic activity. The best sulfonated material NPC (PC200-H2SO4) shows a high catalytic activity for the esterification of acetic acid (90.8%) and oleic acid (60.6%) with ethanol. The conversion and conversion rate values are better than commercial acid catalysts. The results suggest that sulfonated NPC catalysts are promising materials for the synthesis of biodiesel and related reactions.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.arabjc.2015.08.018
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1878535215002580
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBIODIESEL
dc.subjectFISCHER ESTERIFICATION
dc.subjectSULFONATED POROUS CARBON
dc.subjectSULFONATION
dc.titleApplication of sulfonated nanoporous carbons as acid catalysts for Fischer esterification reactions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución