dc.creatorArnaud, Elise
dc.creatorMemin, Etienne
dc.creatorCernuschi Frias, Bruno
dc.date.accessioned2020-07-22T15:09:05Z
dc.date.accessioned2022-10-15T09:30:03Z
dc.date.available2020-07-22T15:09:05Z
dc.date.available2022-10-15T09:30:03Z
dc.date.created2020-07-22T15:09:05Z
dc.date.issued2005-01
dc.identifierArnaud, Elise; Memin, Etienne; Cernuschi Frias, Bruno; Conditional filters for image sequence-based tracking - application to point tracking; Institute of Electrical and Electronics Engineers; Ieee Transactions on Image Processing; 14; 1; 1-2005; 63-79
dc.identifier1057-7149
dc.identifierhttp://hdl.handle.net/11336/109858
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4370567
dc.description.abstractA new conditional formulation of classical filtering methods is proposed.  This formulation is  dedicated to image sequence-based tracking.  These conditional filters allow  solving systems whose measurements and  state equation are estimated from the image data. In particular, the model that is considered  for point tracking combines a state equation relying on the optical flow constraint  and measurements provided by a matching technique. Based on this, two point trackers  are derived. The first one is a linear tracker well suited to image sequences  exhibiting global-dominant motion. This filter is determined through the use of a new  estimator, called the conditional linear minimum variance estimator. The second one is  a  nonlinear tracker, implemented from a conditional particle filter. It allows tracking of  points  whose motion may be only locally described. These conditional trackers  significantly  improve results in some general situations. In particular, they allow for dealing  with noisy sequences, abrupt changes of trajectories, occlusions, and cluttered  background.
dc.languageeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/1369330
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TIP.2004.838707
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectPOINT TRACKING
dc.subjectSTOCHASTIC FILTERING
dc.subjectMINIMUM VARIANCE ESTIMATOR
dc.subjectPARTICLE FILTERING
dc.subjectOPTIMAL IMPORTANCE FUNCTION
dc.subjectROBUST MOTION ESTIMATION
dc.subjectCORRELATION MEASUREMENT
dc.subjectGATING
dc.titleConditional filters for image sequence-based tracking - application to point tracking
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución