dc.creatorMartínez, María Jimena
dc.creatorRazuc, Marina
dc.creatorPonzoni, Ignacio
dc.date.accessioned2020-03-18T17:40:39Z
dc.date.accessioned2022-10-15T09:17:44Z
dc.date.available2020-03-18T17:40:39Z
dc.date.available2022-10-15T09:17:44Z
dc.date.created2020-03-18T17:40:39Z
dc.date.issued2019-02
dc.identifierMartínez, María Jimena; Razuc, Marina; Ponzoni, Ignacio; MoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics; Hindawi Publishing Corporation; BioMed Research International; 2019; 2-2019; 1-12
dc.identifier2314-6133
dc.identifierhttp://hdl.handle.net/11336/100073
dc.identifier2314-6141
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4369476
dc.description.abstractThe selection of the most relevant molecular descriptors to describe a target variable in the context of QSAR (Quantitative Structure-Activity Relationship) modelling is a challenging combinatorial optimization problem. In this paper, a novel software tool for addressing this task in the context of regression and classification modelling is presented. The methodology that implements the tool is organized into two phases. The first phase uses a multiobjective evolutionary technique to perform the selection of subsets of descriptors. The second phase performs an external validation of the chosen descriptors subsets in order to improve reliability. The tool functionalities have been illustrated through a case study for the estimation of the ready biodegradation property as an example of classification QSAR modelling. The results obtained show the usefulness and potential of this novel software tool that aims to reduce the time and costs of development in the drug discovery process.
dc.languageeng
dc.publisherHindawi Publishing Corporation
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1155/2019/2905203
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/bmri/2019/2905203/
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMachine Learning
dc.subjectQSAR
dc.subjectFeature Selection
dc.subjectMolecular Informatics
dc.titleMoDeSuS: A machine learning tool for selection of molecular descriptors in qsar studies applied to molecular informatics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución