dc.creatorAltszyler Lemcovich, Edgar Jaim
dc.creatorBrusco, Pablo
dc.creatorBasiou, Nikoletta
dc.creatorByrnes, John
dc.creatorVergyri, Dimitra
dc.date.accessioned2021-10-05T15:53:57Z
dc.date.accessioned2022-10-15T09:13:00Z
dc.date.available2021-10-05T15:53:57Z
dc.date.available2022-10-15T09:13:00Z
dc.date.created2021-10-05T15:53:57Z
dc.date.issued2020-09
dc.identifierAltszyler Lemcovich, Edgar Jaim; Brusco, Pablo; Basiou, Nikoletta; Byrnes, John; Vergyri, Dimitra; Zero-shot Multi-Domain Dialog State Tracking Using Descriptive Rules; Cornell University; ArXiv; 2020; 9-2020; 1-4
dc.identifierhttp://hdl.handle.net/11336/142699
dc.identifier2331-8422
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4369033
dc.description.abstractIn this work, we present a framework for incorporating descriptive logical rules in state-of-the-art neural networks, enabling them to learn how to handle unseen labels without the introduction of any new training data. The rules are integrated into existing networks without modifying their architecture, through an additional term in the network’s loss function that penalizes states of the network that do not obey the designed rules.As a case of study, the framework is applied to an existing neuralbased Dialog State Tracker. Our experiments demonstrate that the inclusion of logical rules allows the prediction of unseen labels, without deteriorating the predictive capacity of the original system.
dc.languageeng
dc.publisherCornell University
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2009.13275
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectZERO-SHOT LEARNING
dc.subjectDIFFERENTIABLE LOGIC
dc.subjectNEURAL NETWORKS
dc.subjectDIALOG SYSTEMS
dc.titleZero-shot Multi-Domain Dialog State Tracking Using Descriptive Rules
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución