dc.creatorMorales Garcia, John Armando
dc.creatorOrduña, Eduardo Agustín
dc.creatorRehtanz, C.
dc.date.accessioned2021-02-04T17:08:05Z
dc.date.accessioned2022-10-15T09:11:18Z
dc.date.available2021-02-04T17:08:05Z
dc.date.available2022-10-15T09:11:18Z
dc.date.created2021-02-04T17:08:05Z
dc.date.issued2014-06
dc.identifierMorales Garcia, John Armando; Orduña, Eduardo Agustín; Rehtanz, C.; Classification of lightning stroke on transmission line using multi-resolution analysis and machine learning; Elsevier; International Journal of Electrical Power & Energy Systems; 58; 6-2014; 19-31
dc.identifier0142-0615
dc.identifierhttp://hdl.handle.net/11336/124808
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4368890
dc.description.abstractOne of most important elements of Electric Power Systems (EPS) is the transmission line (TL), which is permanently under adverse conditions especially lightning strokes. At the moment, those phenomena have been the root cause of short circuits and the most important cause of mal-operation of transmission line protection relays. Thus, this paper develops the classification of lightning transient signals with and without fault. Multi-resolution analysis (MRA) is used to analyze those signals considering five mother wavelets and different decomposition levels of three phase voltages. In this manner, Spectral Energy and Machine Learning as Artificial Neural Network, K-Nearest Neighbors and Support Vector Machine are employed to classify those signals. On the other hand, the developed work in this paper analyzes most important parameters of lightning strokes, which are essentials in producing conditions with and without fault. Results show that the methodology presents an acceptable performance. © 2013 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijepes.2013.12.017
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0142061513005425
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBACK-FLASHOVER
dc.subjectDECOMPOSITION LEVEL
dc.subjectFLASHOVER
dc.subjectLIGHTNING STROKE
dc.subjectMACHINE LEARNING
dc.subjectMULTI-RESOLUTION ANALYSIS
dc.titleClassification of lightning stroke on transmission line using multi-resolution analysis and machine learning
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución