dc.creatorFernández Ferreyra, Damián Roberto
dc.creatorSolodov, Mikhail
dc.date.accessioned2021-02-26T20:38:22Z
dc.date.accessioned2022-10-15T09:09:13Z
dc.date.available2021-02-26T20:38:22Z
dc.date.available2022-10-15T09:09:13Z
dc.date.created2021-02-26T20:38:22Z
dc.date.issued2020-07
dc.identifierFernández Ferreyra, Damián Roberto; Solodov, Mikhail; On the cost of solving augmented Lagrangian subproblems; Springer; Mathematical Programming; 182; 1-2; 7-2020; 37-55
dc.identifier0025-5610
dc.identifierhttp://hdl.handle.net/11336/126878
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4368681
dc.description.abstractAt each iteration of the augmented Lagrangian algorithm, a nonlinear subproblem is being solved. The number of inner iterations (of some/any method) needed to obtain a solution of the subproblem, or even a suitable approximate stationary point, is in principle unknown. In this paper we show that to compute an approximate stationary point sufficient to guarantee local superlinear convergence of the augmented Lagrangian iterations, it is enough to solve two quadratic programming problems (or two linear systems in the equality-constrained case). In other words, two inner Newtonian iterations are sufficient. To the best of our knowledge, such results are not available even under the strongest assumptions (of second-order sufficiency, strict complementarity, and the linear independence constraint qualification). Our analysis is performed under second-order sufficiency only, which is the weakest assumption for obtaining local convergence and rate of convergence of outer iterations of the augmented Lagrangian algorithm. The structure of the quadratic problems in question is related to the stabilized sequential quadratic programming and to second-order corrections.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10107-019-01384-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10107-019-01384-1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAUGMENTED LAGRANGIAN
dc.subjectNEWTON METHODS
dc.subjectSECOND-ORDER CORRECTION
dc.subjectSTABILIZED SEQUENTIAL QUADRATIC PROGRAMMING
dc.subjectSUPERLINEAR CONVERGENCE
dc.titleOn the cost of solving augmented Lagrangian subproblems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución