dc.creatorPasinetti, Pedro Marcelo
dc.creatorRamírez, Lucía Soledad
dc.creatorCentres, Paulo Marcelo
dc.creatorRamirez Pastor, Antonio Jose
dc.creatorCwilich, Gabriel
dc.date.accessioned2020-10-28T17:08:44Z
dc.date.accessioned2022-10-15T09:07:38Z
dc.date.available2020-10-28T17:08:44Z
dc.date.available2022-10-15T09:07:38Z
dc.date.created2020-10-28T17:08:44Z
dc.date.issued2019-11
dc.identifierPasinetti, Pedro Marcelo; Ramírez, Lucía Soledad; Centres, Paulo Marcelo; Ramirez Pastor, Antonio Jose; Cwilich, Gabriel; Random sequential adsorption on Euclidean, fractal, and random lattices; American Physical Society; Physical Review E; 100; 5; 11-2019; 1-8
dc.identifier2470-0053
dc.identifierhttp://hdl.handle.net/11336/117073
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4368538
dc.description.abstractIrreversible adsorption of objects of different shapes and sizes on Euclidean, fractal, and random lattices is studied. The adsorption process is modeled by using random sequential adsorption algorithm. Objects are adsorbed on one-, two-, and three-dimensional Euclidean lattices, on Sierpinski carpets having dimension d between 1 and 2, and on Erdos-Rényi random graphs. The number of sites is M=Ld for Euclidean and fractal lattices, where L is a characteristic length of the system. In the case of random graphs, such a characteristic length does not exist, and the substrate can be characterized by a fixed set of M vertices (sites) and an average connectivity (or degree) g. This paper concentrates on measuring (i) the probability WL(M)(θ) that a lattice composed of Ld(M) elements reaches a coverage θ and (ii) the exponent νj characterizing the so-called jamming transition. The results obtained for Euclidean, fractal, and random lattices indicate that the quantities derived from the jamming probability WL(M)(θ), such as (dWL/dθ)max and the inverse of the standard deviation ΔL, behave asymptotically as M1/2. In the case of Euclidean and fractal lattices, where L and d can be defined, the asymptotic behavior can be written as M1/2=Ld/2=L1/νj, with νj=2/d.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevE.100.052114
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.100.052114
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1907.02572
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRANDOM SECUENTIAL ASDORPTION
dc.subjectJAMMING
dc.subjectNETWORKS
dc.titleRandom sequential adsorption on Euclidean, fractal, and random lattices
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución