dc.creatorHarboure, Eleonor Ofelia
dc.creatorTorrea Hernández, José Luis
dc.creatorViviani, Beatriz Eleonora
dc.date.accessioned2020-03-04T16:59:40Z
dc.date.accessioned2022-10-15T09:05:30Z
dc.date.available2020-03-04T16:59:40Z
dc.date.available2022-10-15T09:05:30Z
dc.date.created2020-03-04T16:59:40Z
dc.date.issued2000-12
dc.identifierHarboure, Eleonor Ofelia; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora; On the Search for weighted inequalities for Operators related to the Ornstein-Uhlenbeck Semigroup; Springer; Mathematische Annalen; 318; 12-2000; 341-353
dc.identifier0025-5831
dc.identifierhttp://hdl.handle.net/11336/98756
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4368338
dc.description.abstractIn this paper,for each given p, 1 < p < ∞, we characterize the weights v for which the centered maximal function with respect to the gaussian measure and the Ornstein-Uhlenbeck maximal operator are well defined for every function in Lp(vdγ ) and their means converge almost everywhere. In doing so,we find that this condition is also necessary and sufficient for the existence of a weight u such that the operators are bounded from Lp(vdγ ) into Lp(udγ ). We approach the poblem by proving some vector valued inequalities. As a byproduct we obtain the strong type (1, 1) for the “global" part of the centered maximal function.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s002080000126
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectOrnstein-Uhlenbeck
dc.subjectVector Valued Inequalities
dc.subjectWeighted Inequalities
dc.titleOn the Search for weighted inequalities for Operators related to the Ornstein-Uhlenbeck Semigroup
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución