dc.creatorAmster, Pablo Gustavo
dc.date.accessioned2019-11-14T19:08:07Z
dc.date.accessioned2022-10-15T08:59:29Z
dc.date.available2019-11-14T19:08:07Z
dc.date.available2022-10-15T08:59:29Z
dc.date.created2019-11-14T19:08:07Z
dc.date.issued2018-08
dc.identifierAmster, Pablo Gustavo; Symmetry breaking for an elliptic equation involving the fractional Laplacian.; Khayyam Publishing, Inc.; Differential and Integral Equations; 31; 1-2; 8-2018; 75-94
dc.identifier0893-4983
dc.identifierhttp://hdl.handle.net/11336/88943
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4367857
dc.description.abstractWe study the symmetry breaking phenomenon for an elliptic equation involving the fractional Laplacian in a large ball. Our main tool is an extension of the Strauss radial lemma involving the fractional Laplacian, which might be of independent interest; and from which we derive compact embedding theorems for a Sobolev-type space of radial functions with power weights.
dc.languageeng
dc.publisherKhayyam Publishing, Inc.
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.die/1509041402
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectfractional Laplacian
dc.subjectsymmetry breaking
dc.subjectStrauss inequality
dc.subjectembedding theorems
dc.titleSymmetry breaking for an elliptic equation involving the fractional Laplacian.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución