dc.creatorCerqueira, Edgardo Daniel
dc.creatorFraiman Borrazás, Daniel Edmundo
dc.creatorVargas, Claudia Vanesa
dc.creatorLeonardi, Florencia Graciela
dc.date.accessioned2019-08-13T19:33:39Z
dc.date.accessioned2022-10-15T08:55:39Z
dc.date.available2019-08-13T19:33:39Z
dc.date.available2022-10-15T08:55:39Z
dc.date.created2019-08-13T19:33:39Z
dc.date.issued2017-04
dc.identifierCerqueira, Edgardo Daniel; Fraiman Borrazás, Daniel Edmundo; Vargas, Claudia Vanesa; Leonardi, Florencia Graciela; A Test of Hypotheses for Random Graph Distributions Built From EEG Data; IEEE Computer Society; IEEE Transactions on Network Science and Engineering; 4; 2; 4-2017; 75-82
dc.identifier2327-4697
dc.identifierhttp://hdl.handle.net/11336/81575
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4367535
dc.description.abstractThe theory of random graphs has been applied in recent years to model neural interactions in the brain. While the probabilistic properties of random graphs has been extensively studied, the development of statistical inference methods for this class of objects has received less attention. In this work we propose a non-parametric test of hypotheses to test if a sample of random graphs was generated by a given probability distribution (one-sample test) or if two samples of random graphs were originated from the same probability distribution (two-sample test). We prove a Central Limit Theorem providing the asymptotic distribution of the test statistics and we propose a method to compute the quantiles of the finite sample distributions by simulation. The test makes no assumption on the specific form of the distributions and it is consistent against any alternative hypotheses that differs from the sample distribution on at least one edge-marginal. Moreover, we show that the test is a Kolmogorov-Smirnov type test, for a given distance between graphs, and we study its performance on simulated data. We apply it to compare graphs of brain functional network interactions built from electroencephalographic (EEG) data collected during the visualization of point light displays depicting human locomotion.
dc.languageeng
dc.publisherIEEE Computer Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/7862892/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TNSE.2017.2674026
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectEEG
dc.subjectKOLMOGOROV-SMIRNOV TEST
dc.subjectNON-PARAMETRIC TEST OF HYPOTHESES
dc.subjectRANDOM GRAPHS
dc.titleA Test of Hypotheses for Random Graph Distributions Built From EEG Data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución