dc.creatorPiterman, Kevin
dc.date.accessioned2020-10-27T16:43:09Z
dc.date.accessioned2022-10-15T08:53:07Z
dc.date.available2020-10-27T16:43:09Z
dc.date.available2022-10-15T08:53:07Z
dc.date.created2020-10-27T16:43:09Z
dc.date.issued2019-06
dc.identifierPiterman, Kevin; A stronger reformulation of Webb's conjecture in terms of finite topological spaces; Academic Press Inc Elsevier Science; Journal of Algebra; 527; 6-2019; 280-305
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/116940
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4367306
dc.description.abstractWe investigate a stronger formulation of Webb's conjecture on the contractibility of the orbit space of the p-subgroup complexes in terms of finite topological spaces. The original conjecture, which was first proved by Symonds and, more recently, by Bux, Libman and Linckelmann, can be restated in terms of the topology of certain finite spaces. We propose a stronger conjecture, and prove various particular cases by combining fusion theory of finite groups and homotopy theory of finite spaces.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jalgebra.2019.02.037
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869319301401
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFINITE TOPOLOGICAL SPACES
dc.subjectFUSION
dc.subjectORBIT SPACES
dc.subjectP-SUBGROUPS
dc.subjectPOSETS
dc.titleA stronger reformulation of Webb's conjecture in terms of finite topological spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución