dc.creatorWolanski, Noemi Irene
dc.date.accessioned2022-07-01T10:06:41Z
dc.date.accessioned2022-10-15T08:39:06Z
dc.date.available2022-07-01T10:06:41Z
dc.date.available2022-10-15T08:39:06Z
dc.date.created2022-07-01T10:06:41Z
dc.date.issued2021-11
dc.identifierWolanski, Noemi Irene; A free boundary problem in Orlicz spaces related to mean curvature; Elsevier; Journal Of Nonlinear Analysis; 212; 11-2021; 1-21
dc.identifier0362-546X
dc.identifierhttp://hdl.handle.net/11336/161016
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4365997
dc.description.abstractIn this paper we address a one phase minimization problem for a functional that includes the perimeter of the positivity set. It also includes three terms, the first one is ∫fu and the second ∫u>0h where f and h are bounded functions. The third term is ∫G(|∇u|) where G is a smooth convex function. This term generalizes the integral of the |∇u|p. As a consequence of our results we find that, when f≤0, there exists a nonnegative minimizer. Moreover, every nonnegative minimizer is Lipschitz continuous, it is a solution to ΔGu=f in {u>0} and satisfies that H=Φ(|∇u|)−h on the reduced free boundary, ∂red{u>0} which, as a consequence, is proved to be as smooth as the data allow. Here Φ(t)=tg(t)−G(t) (g=G′) and H is the mean curvature of the free boundary.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.na.2021.112452
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X21001309?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFREE BOUNDARY REGULARITY
dc.subjectMEAN CURVATURE
dc.subjectMINIMIZATION PROBLEMS
dc.titleA free boundary problem in Orlicz spaces related to mean curvature
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución