dc.creatorSimion, Cristian Eugen
dc.creatorSchipani, Federico
dc.creatorPapadogianni, Alexandra
dc.creatorStanoiu, Adelina
dc.creatorBudde, Melanie
dc.creatorOprea, Alexandru
dc.creatorWeimar, Udo
dc.creatorBierwagen, Oliver
dc.creatorBarsan, Nicolae
dc.date.accessioned2020-12-29T16:31:00Z
dc.date.accessioned2022-10-15T08:23:35Z
dc.date.available2020-12-29T16:31:00Z
dc.date.available2022-10-15T08:23:35Z
dc.date.created2020-12-29T16:31:00Z
dc.date.issued2019-09
dc.identifierSimion, Cristian Eugen; Schipani, Federico; Papadogianni, Alexandra; Stanoiu, Adelina; Budde, Melanie; et al.; Conductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101); American Chemical Society; ACS Sensors; 4; 9; 9-2019; 2420-2428
dc.identifier2379-3694
dc.identifierhttp://hdl.handle.net/11336/121278
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4364696
dc.description.abstractSemiconducting metal oxide (SMOX)-based gas sensors are indispensable for safety and health applications, for example, explosive, toxic gas alarms, controls for intake into car cabins, and monitor for industrial processes. In the past, the sensor community has been studying polycrystalline materials as sensors where the porous and random microstructure of the SMOX does not allow a separation of the phenomena involved in the sensing process. This led to conduction models that can model and predict the behavior of the overall response, but they were not capable of giving fundamental information regarding the basic mechanisms taking place. The study of epitaxial layers is a definite improvement, allowing clarifying the different aspects and contributions of the sensing mechanisms. A detailed analytical model of the transduction function for n-A nd p-type single-crystalline/compact metal oxide gas sensors was developed that directly relates the conductance of the sample with changes in the surface electrostatic potential. Combined dc resistance and work function measurements were used in a compact SnO2(101) layer in operando conditions that allowed us to check the validity of our model in the region where Boltzmann approximation holds to determine the surface and bulk properties of the material.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acssensors.9b01018
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssensors.9b01018
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCompact layers
dc.subjectEpitaxial SnO2
dc.subjectSingle-crystalline
dc.subjectConduction model
dc.subjectSMOX
dc.subjectGas sensor
dc.titleConductance model for single-crystalline/compact metal oxide gas-sensing layers in the nondegenerate limit: Example of epitaxial SnO2(101)
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución